1887

Abstract

The complete genome sequence of has revealed the presence of a novel set of chemotaxis genes including three paralogues. CheV is a bi-functional protein, the N-terminal domain being homologous to the signalling-complex linker protein CheW, while the C-terminal domain is homologous to the response-regulator CheY, but its precise function in chemotaxis is unknown. In this study, each of the three paralogues were insertionally inactivated in strain 26695 to determine their importance in the chemotactic signal-transduction pathway of . Mutation of HP0019 () had a severe inhibitory effect on chemotaxis, as determined by a swarm-plate assay. In contrast, strains carrying single mutations in either (HP0616) or (HP0393) displayed wild-type swarming behaviour, as did a double mutant. However, expression of the or genes in resulted in an inhibition of chemotaxis in a wild-type strain, indicating their role in chemotaxis, although these genes were unable to complement isogenic or mutants. The product of /HP0616 was overexpressed in and purified to homogeneity. Protein fluorescence quenching experiments showed that CheV2 was capable of binding acetyl phosphate, a small-molecule phosphodonor. The measured for acetyl phosphate was 21 mM. It is concluded that in the absence of a gene, the CheV proteins could act as phosphate sinks to control the cellular level of phospho-CheY in . However, only CheV1 was critical for chemotaxis, indicating a specific role distinct from the other paralogues in the signal-transduction pathway. Significantly, none of the CheV proteins could substitute for the loss of CheW, as an null mutant was non-chemotactic.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-9-2493
2001-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/9/1472493a.html?itemId=/content/journal/micro/10.1099/00221287-147-9-2493&mimeType=html&fmt=ahah

References

  1. Akopyants N. S., Eaton K. A., Berg D. E. 1995; Adaptive mutation and co-colonisation during infection of gnotobiotic piglets. Infect Immun 63:116–121
    [Google Scholar]
  2. Alm R. A., Ling L.-S. L., Moir D. T. 20 other authors 1999; Genomic sequencing comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori . Nature 397:176–180 [CrossRef]
    [Google Scholar]
  3. Armitage J. P., Schmitt R. 1997; Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti – variations on a theme?. Microbiology 143:3671–3682 [CrossRef]
    [Google Scholar]
  4. Beier D., Spohn G., Rappuoli R., Scarlato V. 1997; Identification and characterisation of an operon of Helicobacter pylori that is involved in motility and stress adaptation. J Bacteriol 179:4676–4683
    [Google Scholar]
  5. Blair D. F. 1995; How bacteria sense and swim. Annu Rev Microbiol 49:489–522 [CrossRef]
    [Google Scholar]
  6. Bourret R. B., Borkovich K. A., Simon M. I. 1991; Signal transduction involving phosphorylation in prokaryotes. Annu Rev Biochem 60:401–441 [CrossRef]
    [Google Scholar]
  7. Chalker A. F., Mineheart H. W., Hughes N. J. 8 other authors 2001; Systematic identification of selective essential genes in Helicobacter pylori by genome prioritization and allelic replacement mutagenesis. J Bacteriol 183:1259–1268 [CrossRef]
    [Google Scholar]
  8. Da Re S. S., Deville-Bonne D., Tolstyk T., Veron M., Stock J. B. 1999; Kinetics of CheY phosphorylation by small molecule phosphodonors. FEBS Lett 457:323–326 [CrossRef]
    [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  10. Doig P., de Jonge B. L., Alm R. A. 10 other authors 1999; Helicobacter pylori physiology predicted from genomic comparison of two strains. Microbiol Mol Biol Rev 63:675–707
    [Google Scholar]
  11. Eaton K. A., Morgan D. R., Krakowa S. 1992; Motility as a factor in the colonisation of gnotobiotic piglets by Helicobacter pylori . J Med Microbiol 37:123–127 [CrossRef]
    [Google Scholar]
  12. Eaton K. A., Suerbaum S., Josenhans C., Krakowa S. 1996; Colonisation of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect Immun 64:2445–2448
    [Google Scholar]
  13. Felsenstein J. 1993 phylip: Phylogeny Inference Package. Version 3.5 Seattle, WA: University of Washington;
    [Google Scholar]
  14. Ferrero R. L., Cussac V., Courcoux P., Labigne-Roussel A. 1992; Construction of isogenic urease-negative mutants of Helicobacter pylori by allelic exchange. J Bacteriol 174:4212–4217
    [Google Scholar]
  15. Forman D., Newell D. G., Fullerton F., Yarnell J. W. G., Stacey A. R., Wald N., Sitas F. 1991; Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a perspective investigation. Br Med J 302:1302–1305 [CrossRef]
    [Google Scholar]
  16. Foynes S., Dorrell N., Ward S. J., Stabler R. A., McColm A. A., Rycroft A. N., Wren B. W. 2000; Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa. Infect Immun 68:2016–2023 [CrossRef]
    [Google Scholar]
  17. Frederick K. L., Helmann J. D. 1994; Dual chemotaxis signalling pathways in Bacillus subtilis : a σD-dependent gene encodes a novel protein with both CheW and CheY homologous domains. J Bacteriol 176:2727–2735
    [Google Scholar]
  18. Hamblin P. A., Bourne N. A., Armitage J. P. 1997; Characterisation of the chemotaxis protein CheW from Rhodobacter sphaeroides and its effect on the behaviour of Escherichia coli . Mol Microbiol 24:41–51 [CrossRef]
    [Google Scholar]
  19. Jackson C. J., Kelly D. J., Clayton C. L. 1995; The cloning and characterisation of chemotaxis genes in Helicobacter pylori . Gut 37:S1A18 [CrossRef]
    [Google Scholar]
  20. Kelly D. J. 1998; The physiology and metabolism of the human gastric pathogen Helicobacter pylori . Adv Microb Physiol 40:137–189
    [Google Scholar]
  21. Lukat G. S., McCleary W. R., Stock A. M., Stock J. B. 1992; Phosphorylation of bacterial response regulator proteins by low-molecular weight phosphodonors. Proc Natl Acad Sci USA 89:718–722 [CrossRef]
    [Google Scholar]
  22. McCleary W. R. 1996; The activation of PhoB by acetylphosphate. Mol Microbiol 20:1155–1163 [CrossRef]
    [Google Scholar]
  23. McCleary W. R., Stock J. B. 1994; Acetyl-phosphate and the activation of two-component response-regulators. J Biol Chem 269:31567–31572
    [Google Scholar]
  24. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  25. Marshall B. J., Armstrong J. A., McGechie D. B., Glancy R. J. 1985; Attempt to fulfil Koch’s postulates for pyloric campylobacter. Med J Aust 142:436–439
    [Google Scholar]
  26. Morrison T. B., Parkinson J. S. 1994; Liberation of an interaction domain from the phosphotransfer region of CheA, a signaling kinase of Escherichia coli . Proc Natl Acad Sci USA 91:5485–5489 [CrossRef]
    [Google Scholar]
  27. Moss S., Calam J. 1992; Helicobacter pylori and peptic ulcers: the present position. Gut 33:289–292 [CrossRef]
    [Google Scholar]
  28. Page R. D. M. 1996; Treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  29. Rosario M. M. L., Frederick K. L., Ordal G. W., Helmann J. D. 1994; Chemotaxis in Bacillus subtilis requires either of two functionally redundant CheW homologues. J Bacteriol 176:2736–2739
    [Google Scholar]
  30. Sanders D. A., Gillece-Castro B. L., Stock A. M., Burlingame A. L., Koshland D. E.Jr. 1989a; Identification of the site of phosphorylation of the chemotaxis protein response regulator, CheY. J Biol Chem 264:21770–21778
    [Google Scholar]
  31. Sanders D. A., Mendez B., Koshland D. E.Jr. 1989b; Role of the CheW protein in bacterial chemotaxis: overexpression is equivalent to absence. J Bacteriol 171:6271–6278
    [Google Scholar]
  32. Sourjik V., Schmitt R. 1996; Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti . Mol Microbiol 22:427–436 [CrossRef]
    [Google Scholar]
  33. Stock J. B., Surette M. G. 1996; Chemotaxis. In Escherichia coli and Salmonella typhimurium pp 1103–1129 Edited by Neidhardt F. C. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  34. Studier F. W., Moffat B. A. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130 [CrossRef]
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewiniak F., Jeanmougin F., Higgins D. A. 1997; The clustal_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  36. Tomb J.-F., White O., Kerlavage A. R. 39 other authors 1997; The complete genome sequence of the gastric pathogen Helicobacter pylori . Nature 388:539–547 [CrossRef]
    [Google Scholar]
  37. Volz K. 1993; Structural conservation in the CheY superfamily. Biochemistry 32:11741–11753 [CrossRef]
    [Google Scholar]
  38. Wang Y., Taylor D. E. 1990; Chloramphenicol resistance in Campylobacter coli – nucleotide-sequence, expression, and cloning vector construction. Gene 94:23–28 [CrossRef]
    [Google Scholar]
  39. Wyatt J. I., Rathbone B. J., Dixon M. F., Heatley R. V. 1987; Campylobacter pyloridis and acid-induced metaplasia in the pathogenesis of duodenitis. J Clin Pathol 40:841–848 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-9-2493
Loading
/content/journal/micro/10.1099/00221287-147-9-2493
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error