1887

Abstract

Twenty-three propane- and butane-utilizing bacteria were isolated from soil samples collected from oilfields. Three of them have been identified as sp. IMT35, sp. IMT37 and sp. MT40. SDS-PAGE analysis of the membrane of sp. IMT35 revealed the presence of at least four polypeptides induced by propane. Polyclonal antibody raised against a 58 kDa polypeptide from sp. IMT35 specifically detected bacteria which were actively utilizing propane or butane. Immunoscreening of a genomic library in λgt11 with this antibody resulted in isolation of a clone containing a 4·9 kb RI genomic DNA fragment. This 4·9 kb DNA fragment was found to hybridize specifically with organisms which could grow on propane or butane. This fragment could therefore be used as a probe for detection of such bacteria. A 2·3 kb fragment having an ORF encoding a polypeptide of 54 kDa was identified by screening a genomic library of sp. IMT37 with this 4·9 kb RI fragment. The sequence of the ORF (designated ) was found to be novel. Primer extension and S1 nuclease mapping showed that transcription of the ORF starts at base 283 and it had sequences upstream similar to that of a promoter (−12, −24 type). Disruption of the ORF by a kanamycin (‘kan’) cassette prevented the organism from growing on any alkane but did not affect its ability to utilize the respective alkanols and acids, indicating that alcohol dehydrogenase and subsequent steps in the pathway remained unaltered. The mutants had no detectable level of butane monooxygenase activity. Therefore, the product of this gene plays a crucial role in the first step of the pathway and is an essential component of monooxygenase. The findings imply that this bacterium either employs a common genetic and metabolic route or at least shares the product of this gene for utilization of many alkanes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-9-2479
2001-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/9/1472479a.html?itemId=/content/journal/micro/10.1099/00221287-147-9-2479&mimeType=html&fmt=ahah

References

  1. Arp D. J. 1999; Butane metabolism by butane grown ‘ Pseudomonas butanovora ’. Microbiology 145:1173–1180 [CrossRef]
    [Google Scholar]
  2. Buchel D. E., Gronenborn B., Müller-Hill B. 1980; Sequence of the lactose permease gene. Nature 283:541–545 [CrossRef]
    [Google Scholar]
  3. Colby J., Stirling D. I., Dalton H. 1977; The soluble methane monooxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n -alkanes, n -alkenes, ethers and alicyclic, aromatic and heterocyclic compounds. Biochem J 165:395–402
    [Google Scholar]
  4. Colby J., Dalton H., Whittenbury R. 1979; Biological and biochemical aspects of microbial growth on C1 compounds. Annu Rev Microbiol 33:481–517 [CrossRef]
    [Google Scholar]
  5. Coleman J. P., Perry J. J. 1985; Purification and characterization of the secondary alcohol dehydrogenase from propane utilizing Mycobacterium vaccae JOB 5. J Gen Microbiol 131:2901–2907
    [Google Scholar]
  6. Dalton H. 1980; Oxidation of hydrocarbons by methane monooxygenase from a variety of microbes. Adv Appl Microbiol 131:2901–2907
    [Google Scholar]
  7. Dalton H. S., Prior D., Leak D. J., Stanley S. H. 1984; Regulation and control of methane monooxygenase. In Microbial Growth on C1 Compounds pp 75–82 Proceedings of the 4th International Symposium Edited by Crawford R. L., Hanson R. S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Deretic V., Gill J. F., Chakrabarty A. M. 1987; Alginate biosynthesis: a model system for gene regulation and function in Pseudomonas . Biotechnology 5:469–477 [CrossRef]
    [Google Scholar]
  9. Dixon R. 1986; The xylABC promoter from the Pseudomonas putida TOL plasmid is activated by nitrogen regulatory genes in Escherichia coli . Mol Gen Genet 203:129–136 [CrossRef]
    [Google Scholar]
  10. Eggink G., Lageveen R. C., Attenburg B., Witholt B. 1987a; Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli . J Biol Chem 262:17712–17718
    [Google Scholar]
  11. Eggink G., van Lelyveld P. H., Arnberg A., Arfman N., Witteveenv C., Witholt B. 1987b; Structure of the Pseudomonas putida alk BAC operon. J Biol Chem 262:6400–6406
    [Google Scholar]
  12. Eggink G., Engel H., Meijer W. G., Otten J., Kingma J., Witholt B. 1988; Alkane utilization in Pseudomonas oleovorans : structure and function of the regulatory locus alk R. J Biol Chem 263:13400–13405
    [Google Scholar]
  13. Eggink G., Engel H., Vriend G., Terpstra P., Witholt B. 1990; Rubredoxin reductase of Pseudomonas oleovorans : structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD finger prints. J Mol Biol 212:135–142 [CrossRef]
    [Google Scholar]
  14. Fox B. G., Lipscomb J. D. 1988; Purification of a high specific activity methane monooxygenase hydroxylase component from a type II methanotroph. Biochem Biophys Res Commun 154:165–170 [CrossRef]
    [Google Scholar]
  15. Fox B. G., Surerus K. K., Munck E., Lipscomb J. D. 1988; Evidence for a μ-oxo-bridged binuclear iron-cluster in the hydroxylase component of methane monooxygenase, Mossbauer and EPR studies. J Biol Chem 263:10553–10556
    [Google Scholar]
  16. Fox B. G., Froland W. A., Degde J. E., Lipscomb J. D. 1989; Methane mono-oxygenase from Methylosinus trichosporium OB3b. J Biol Chem 264:10023–10033
    [Google Scholar]
  17. Green J., Dalton H. 1989; A stopped flow kinetic study of soluble methane monooxygenase from Methylococcus capsulatus (Bath). Eur J Biochem 153:137–144
    [Google Scholar]
  18. Grunstein M., Hogness D. S. 1975; Colony hybridization, a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci USA 72:3961–3965 [CrossRef]
    [Google Scholar]
  19. Hamamura N., Storfa R. T., Semprini L., Arp D. J. 1999; Diversity in butane monooxygenases among butane-grown bacteria. Appl Environ Microbiol 65:4586–4593
    [Google Scholar]
  20. Hanson R. S. 1980; Ecology and diversity of methylotrophic organisms. Adv Appl Microbiol 26:3–39
    [Google Scholar]
  21. Higgins I. J. 1980; Respiration in methylotrophic bacteria. In Diversity of Bacterial Respiratory Systems pp 187–221 Edited by Knowles C. J. Boca Raton, FL: CRC Press;
    [Google Scholar]
  22. Hohn B., Collins J. 1980; A small cosmid for efficient cloning of large DNA fragments. Gene 11:291–298 [CrossRef]
    [Google Scholar]
  23. Holben W. E., Jansson J. E., Chelm B. K., Tiedje J. M. 1988; DNA probe method for the detection of the soil bacterial community. Appl Environ Microbiol 54:703–711
    [Google Scholar]
  24. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C. 1995; Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208 [CrossRef]
    [Google Scholar]
  25. Johnson K., Parker M. L., Lory S. 1986; Nucleotide sequence and transcriptional initiation site of two Pseudomonas aeruginosa pilin genes. J Biol Chem 261:15703–15708
    [Google Scholar]
  26. Kasper C. W., Hartman P. A. 1987; Production and specificity of monoclonal antibodies and polyclonal antibodies to Escherichia coli . J Appl Bacteriol 63:335–341 [CrossRef]
    [Google Scholar]
  27. Kok M., Oldenhuis R., Van der Linden M. P. G., Raatjes P., Kingna J., Van Lelyveld P. H., Witholt B. 1989a; The Pseudomonas oleovorans alkane hydroxylase gene: sequence and expression. J Biol Chem 264:5435–5441
    [Google Scholar]
  28. Kok M., Oldenhuis R., Van der Linden M. P. G., Meulenberg C. H. C., Kingna J., Witholt B. 1989b; The Pseudomonas oleovorans alk BAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase. J Biol Chem 264:5442–5451
    [Google Scholar]
  29. Kustu S., Santero E., Keener J., Popham D., Weiss D. 1989; Expression of sigma 54 (ntrA)-dependent genes is probably united by a common mechanism. Microbiol Rev 53:367–376
    [Google Scholar]
  30. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  31. Lidstrom M. E., Sterling D. T. 1990; Methylotrophs: genetics and commercial applications. Annu Rev Microbiol 44:27–58 [CrossRef]
    [Google Scholar]
  32. Lonsane B. K., Singh H. D., Baruah J. N. 1977; Geomicrobiological methods for prospecting of petroleum oil gases – a neglected aspect of petroleum prospecting. J Sci Ind Res 36:534–541
    [Google Scholar]
  33. Lukins H. B., Foster J. W. 1963; Methylketone metabolism by hydrocarbon utilizing Mycobacteria . J Bacteriol 85:1074–1087
    [Google Scholar]
  34. Martin H., Murrell J. C. 1995; Methane monooxygenase mutants of Methylosinus trichosporium constructed by marker exchange mutagenesis. FEMS Microbiol Lett 127:243–248 [CrossRef]
    [Google Scholar]
  35. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. 1981; Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science 211:1437–1438 [CrossRef]
    [Google Scholar]
  36. Miyoshi M. 1895; Die Durchbohrung von Membranen durch Pilzfaden. J Wiss Biot . 28269–289 [Cited in Petroleum Microbiology Edited by Atlas R. M. New York: Macmillan.];
    [Google Scholar]
  37. Murrell J. C., Ashraf W. 1990; Cell free assay methods for enzymes of propane utilization. Methods Enzymol 188:26–32
    [Google Scholar]
  38. Ogram A. V., Sayler G. S., Barkay T. 1987; The extraction and purification of microbial DNA from sediments. J Microbiol Methods 7:57–66 [CrossRef]
    [Google Scholar]
  39. Quayle J. R. 1980; Aspects of the regulation of methylotrophic metabolism. FEBS Lett 117:K16–K27 [CrossRef]
    [Google Scholar]
  40. Quayle J. R., Ferenci T. 1978; Evolutionary aspects of autotrophy. Microbiol Rev 42:251–273
    [Google Scholar]
  41. Rosenzweig A. C., Frederick C. A., Lippard S. J., Nordlund P. 1993; Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 366:537–543 [CrossRef]
    [Google Scholar]
  42. Saeki H., Furahashi K. 1994; Cloning and characterization of a Nocardia corallina B-276 gene cluster encoding alkene monooxygenase. J Ferment Bioeng 78:399–404 [CrossRef]
    [Google Scholar]
  43. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Sayler G. S., Shieldo M. S., Tedford E., Breen A., Hooper S., Sirotkin K., Davis J. 1985; Application of DNA-DNA colony hybridization for the detection of catabolic genotypes in environmental samples. Appl Environ Microbiol 49:1295–1303
    [Google Scholar]
  45. Sealy J. Q. 1974; A geomicrobiological method of prospecting for petroleum. Oil Gas J 72:98
    [Google Scholar]
  46. Semrau J. D., Chistoserdov A., Lebron J. 7 other authors 1995; Particulate methane monooxygenase genes in methanotrophs. J Bacteriol 177:3071–3079
    [Google Scholar]
  47. Söhngen N. L. 1906; Üher Bakterien, Welche Methan als Kohlenstoffnahrung Energiquelle Gebrauchen. Zentbl Bakteriol Parasitenkd Abt II . 15513–517 [Cited in Petroleum Microbiology] Edited by Atlas R. M. New York: Macmillan.];
    [Google Scholar]
  48. Stainthorpe A. C., Lees V., Salmond G. P. C., Dalton H., Murrell J. C. 1990; The methane monooxygenase gene cluster of Methylococcus capsulatus (Bath. Gene 91:27–34 [CrossRef]
    [Google Scholar]
  49. Taggart M. S. 1967; Petroleum prospecting. In Petroleum Microbiology pp 195–245 Edited by Davis J. B. Amsterdam: Elsevier;
    [Google Scholar]
  50. Torsvik V. L. 1980; Isolation of bacterial DNA from soil. Soil Biol Biochem 12:15–21 [CrossRef]
    [Google Scholar]
  51. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354 [CrossRef]
    [Google Scholar]
  52. Van Ginkel C. G., Welten H. G. J., Hartmans S., de Bont J. A. M. 1987; Metabolism of trans-2-butene and butane in Nocardia TB1. J Gen Microbiol 133:1713–1720
    [Google Scholar]
  53. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane utilizing bacteria. J Gen Microbiol 61:205–218 [CrossRef]
    [Google Scholar]
  54. Wirth R., Friesenegger A., Fiedler S. 1989; Transformation of various species of gram negative bacteria belonging to 11 different genera by electroporation. Mol Gen Genet 216:175–177 [CrossRef]
    [Google Scholar]
  55. Woodland M. P., Dalton H. 1984; Purification and characterization of component A of the methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem 259:53–59
    [Google Scholar]
  56. Woods N. R., Murrell J. C. 1989; The metabolism of propane in Rhodococcus rhodochrous PNKb1. J Gen Microbiol 135:2335–2344
    [Google Scholar]
  57. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  58. Youvan D. C., Bylina E. J., Alberti M., Begusch H., Hearst J. E. 1984; Nucleotide and deduced polypeptide sequences of the photosynthetic reaction center, B870 antenna and flanking polypeptides from R. capsulata . Cell 37:949–957 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-9-2479
Loading
/content/journal/micro/10.1099/00221287-147-9-2479
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error