1887

Abstract

grows in a remarkable range of mesophilic environments from pH 2 to pH 10. During growth in acidic environments, where acetate is toxic, expression of pyruvate decarboxylase (PDC) serves to direct the flow of pyruvate into ethanol during fermentation. PDC is rare in bacteria and absent in animals, although it is widely distributed in the plant kingdom. The gene from is the first to be cloned and characterized from a Gram-positive bacterium. In , the recombinant gene from was poorly expressed due to differences in codon usage that are typical of low-G+C organisms. Expression was improved by the addition of supplemental codon genes and this facilitated the 136-fold purification of the recombinant enzyme as a homo-tetramer of 58 kDa subunits. Unlike PDC, which exhibits Michaelis–Menten kinetics, PDC is activated by pyruvate and exhibits sigmoidal kinetics similar to fungal and higher plant PDCs. Amino acid residues involved in the allosteric site for pyruvate in fungal PDCs were conserved in PDC, consistent with a conservation of mechanism. Cluster analysis of deduced amino acid sequences confirmed that PDC is quite distant from PDC and plant PDCs. PDC appears to have diverged very early from a common ancestor which included most fungal PDCs and eubacterial indole-3-pyruvate decarboxylases. These results suggest that the gene is quite ancient in origin, in contrast to the , which may have originated by horizontal transfer from higher plants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-9-2425
2001-09-01
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/9/1472425a.html?itemId=/content/journal/micro/10.1099/00221287-147-9-2425&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  2. Alvarez M. E., Rosa A. L., Temporini E. D., Wolstenholme A., Panzetta G., Patrito L., Maccioni H. J.. 1993; The 59-kDa polypeptide constituent of 8–10-nm cytoplasmic filaments in Neurospora crassa is a pyruvate decarboxylase. Gene130:253–258[CrossRef]
    [Google Scholar]
  3. Arjunan P., Umland T., Dyda F.. 7 other authors 1996; Crystal structure of the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from the yeast Saccharomyces cerevisiae at 2·3 Å resolution. J Mol Biol256:590–600[CrossRef]
    [Google Scholar]
  4. Baburina I., Gao Y., Hu Z., Jordan F., Hohmann S., Furey W.. 1994; Substrate activation of brewers’ yeast pyruvate decarboxylase is abolished by mutation of cysteine 221 to serine. Biochemistry33:5630–5635[CrossRef]
    [Google Scholar]
  5. Baburina I., Li H., Bennion B., Furey W., Jordan F.. 1998; Interdomain information transfer during substrate activation of yeast pyruvate decarboxylase: the interaction between cysteine 221 and histidine 92. Biochemistry37:1235–1244[CrossRef]
    [Google Scholar]
  6. Barbosa M. F. S., Ingram L. O.. 1994; Expression of the Zymomonas mobilis alcohol dehydrogenase II ( adhB ) and pyruvate decarboxylase ( pdc ) genes in Bacillus . Curr Microbiol28:279–282[CrossRef]
    [Google Scholar]
  7. Boiteux A., Hess B.. 1970; Allosteric properties of yeast pyruvate decarboxylase. FEBS Lett9:293–296[CrossRef]
    [Google Scholar]
  8. Braü B., Sahm H.. 1986; Cloning and expression of the structural gene for pyruvate decarboxylase of Zymomonas mobilis in Escherichia coli . Arch Microbiol144:296–301[CrossRef]
    [Google Scholar]
  9. Bringer-Meyer S., Schimz K.-L., Sahm H.. 1986; Pyruvate decarboxylase from Zymomonas mobilis . Isolation and partial characterization. Arch Microbiol146:105–110[CrossRef]
    [Google Scholar]
  10. Candy J. M., Duggleby R. G.. 1998; Structure and properties of pyruvate decarboxylase and site-directed mutagenesis of the Zymomonas mobilis enzyme. Biochim Biophys Acta1385:323–338[CrossRef]
    [Google Scholar]
  11. Candy J. M., Duggleby R. G., Mattick J. S.. 1991; Expression of active yeast pyruvate decarboxylase in Escherichia coli . J Gen Microbiol137:2811–2815[CrossRef]
    [Google Scholar]
  12. Conway T., Osman Y. A., Konnan J. I., Hoffmann E. M., Ingram L. O.. 1987; Promoter and nucleotide sequences of the Zymomonas mobilis pyruvate decarboxylase. J Bacteriol169:949–954
    [Google Scholar]
  13. Corpet F.. 1988; Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res16:10881–10890[CrossRef]
    [Google Scholar]
  14. Cserzo M., Wallin E., Simon I., von Heijne G., Elofsson A.. 1997; Prediction of transmembrane α-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng10:673–676[CrossRef]
    [Google Scholar]
  15. Dobritzsch D., Schneider G., Lu G., König S.. 1998; High resolution crystal structure of pyruvate decarboxylase from Zymomonas mobilis . Implications for substrate activation in pyruvate decarboxylases. J Biol Chem273:20196–20204[CrossRef]
    [Google Scholar]
  16. Dyda F., Furey W., Swaminathan S., Sax M., Farrenkopf B., Jordan F.. 1993; Catalytic centers in the thiamin diphosphate dependent enzyme pyruvate decarboxylase at 2·4-Å resolution. Biochemistry32:6165–6170[CrossRef]
    [Google Scholar]
  17. Gold R. S., Meagher M. M., Tong S., Hutkins R. W., Conway T.. 1996; Cloning and expression of the Zymomonas mobilis ‘‘production of ethanol’’ genes in Lactobacillus casei . Curr Microbiol33:256–260[CrossRef]
    [Google Scholar]
  18. Goodwin S., Zeikus J. G.. 1987; Physiological adaptations of anaerobic bacteria to low pH: metabolic control of proton motive force in Sarcina ventriculi . J Bacteriol169:2150–2157
    [Google Scholar]
  19. Harwood C. R., Cutting S. M.. 1990; Molecular Biological Methods for Bacillus New York: Wiley;
    [Google Scholar]
  20. Hawkins C. F., Borges A., Perham R. N.. 1989; A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett255:77–82[CrossRef]
    [Google Scholar]
  21. Hoppner T. C., Doelle H. W.. 1983; Purification and kinetic characteristics of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol production. Eur J Appl Microbiol Biotechnol17:152–157[CrossRef]
    [Google Scholar]
  22. Hübner G., Weidhase R., Schellenberger A.. 1978; The mechanism of substrate activation of pyruvate decarboxylase: a first approach. Eur J Biochem92:175–181[CrossRef]
    [Google Scholar]
  23. Hübner G., König S., Schellenberger A.. 1988; The functional role of thiol groups of pyruvate decarboxylase from brewer’s yeast. Biomed Biochim Acta47:9–18
    [Google Scholar]
  24. Ingram L. O., Aldrich H. C., Borges A. C.. 9 other authors 1999; Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog15:855–866[CrossRef]
    [Google Scholar]
  25. Kellermann E., Seeboth P. G., Hollenberg C. P.. 1986; Analysis of the primary structure and promoter function of a pyruvate decarboxylase gene ( PDC1 ) from Saccharomyces cerevisiae . Nucleic Acids Res14:8963–8977[CrossRef]
    [Google Scholar]
  26. Kim R., Sandler S. J., Goldman S., Yokota H., Clark A. J., Kim S.-H.. 1998; Overexpression of archaeal proteins in Escherichia coli . Biotechnol Lett20:207–210[CrossRef]
    [Google Scholar]
  27. König S.. 1998; Subunit structure, function and organisation of pyruvate decarboxylases from various organisms. Biochim Biophys Acta 1385;271–286[CrossRef]
    [Google Scholar]
  28. Lowe S. E., Zeikus J. G.. 1991; Metabolic regulation of carbon and electron flow as a function of pH during growth of Sarcina ventriculi . Arch Microbiol155:325–329
    [Google Scholar]
  29. Lowe S. E., Zeikus J. G.. 1992; Purification and characterization of pyruvate decarboxylase from Sarcina ventriculi . J Gen Microbiol138:803–807[CrossRef]
    [Google Scholar]
  30. Lu G., Dobritzsch D., Baumann S., Schneider G., König S.. 2000; The structural basis of substrate activation in yeast pyruvate decarboxylase. A crystallographic and kinetic study. Eur J Biochem267:861–868[CrossRef]
    [Google Scholar]
  31. Mücke U., König S., Hübner G.. 1995; Purification and characterisation of pyruvate decarboxylase from pea seeds ( Pisum sativum cv. Miko). Biol Chem Hoppe-Seyler376:111–117[CrossRef]
    [Google Scholar]
  32. Neale A. D., Scopes R. K., Wettenhall R. E., Hoogenraad N. J.. 1987a; Nucleotide sequence of the pyruvate decarboxylase gene from Zymomonas mobilis . Nucleic Acids Res15:1753–1761[CrossRef]
    [Google Scholar]
  33. Neale A. D., Scopes R. K., Wettenhall R. E., Hoogenraad N. J.. 1987b; Pyruvate decarboxylase of Zymomonas mobilis : isolation, properties, and genetic expression in Escherichia coli . J Bacteriol169:1024–1028
    [Google Scholar]
  34. Neuser F., Zorn H., Richter U., Berger R. G.. 2000; Purification, characterisation and cDNA sequencing of pyruvate decarboxylase from Zygosaccharomyces bisporus . Biol Chem381:349–353
    [Google Scholar]
  35. Page R. D.. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci12:357–358
    [Google Scholar]
  36. Raymond W. R., Hostettler J. B., Assar K., Varsel C.. 1979; Orange pyruvate decarboxylase: isolation and mechanistic studies. J Food Sci44:777–781[CrossRef]
    [Google Scholar]
  37. Reynen M., Sahm H.. 1988; Comparison of the structural genes for pyruvate decarboxylase in different Zymomonas mobilis strains. J Bacteriol170:3310–3313
    [Google Scholar]
  38. Rivoal J., Ricard B., Pradet A.. 1990; Purification and partial characterization of pyruvate decarboxylase from Oryza sativa L. Eur J Biochem194:791–797[CrossRef]
    [Google Scholar]
  39. Sanger F., Nicklen S., Coulson A. R.. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA74:5463–5467[CrossRef]
    [Google Scholar]
  40. Southern E. M.. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol98:503–517[CrossRef]
    [Google Scholar]
  41. Stephenson M. P., Dawes E. A.. 1971; Pyruvic acid and formic acid metabolism in Sarcina ventriculi and the role of ferredoxin. J Gen Microbiol69:331–343[CrossRef]
    [Google Scholar]
  42. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680[CrossRef]
    [Google Scholar]
  43. Ullrich J., Donner I.. 1970; Kinetic evidence for two active sites in cytoplasmic yeast pyruvate decarboxylase. Hoppe Seylers Z Physiol Chem351:1026–1029[CrossRef]
    [Google Scholar]
  44. Zehender H., Trescher D., Ullrich J.. 1987; Improved purification of pyruvate decarboxylase from wheat germ. Its partial characterisation and comparison with the yeast enzyme. Eur J Biochem167:149–154[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-9-2425
Loading
/content/journal/micro/10.1099/00221287-147-9-2425
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error