commits to a programmed cell death process in response to acetic acid Free

Abstract

Recent evidence has revealed the occurrence of an apoptotic phenotype in that is inducible with oxidative stress. Here, exposure of to 20–200 mM acetic acid for 200 min at pH 30 resulted in cell death. Yeast mortality induced by 120–200 mM acid was not inhibited by cycloheximide and was accompanied by ultrastructural alterations typical of necrosis. In contrast, alterations associated with cell death induced by 20–80 mM acetic acid included: (i) cycloheximide-inhibitable chromatin condensation along the nuclear envelope; (ii) exposure of phosphatidylserine on the surface of the cytoplasmic membrane, revealed by the FITC–annexin V reaction; and (iii) the occurrence of DNA strand breaks, demonstrated by the TUNEL assay. These results show that a programmed cell death process sharing common features with an apoptotic phenotype can be induced by acetic acid in . This observation raises the possibility of this mode of cell death being more generalized in yeasts than previously considered and extended to cell death induced by other stress agents.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-9-2409
2001-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/9/1472409a.html?itemId=/content/journal/micro/10.1099/00221287-147-9-2409&mimeType=html&fmt=ahah

References

  1. Ameisen J. C. 1996; The origin of programmed cell death. Science 272:1278–1279 [CrossRef]
    [Google Scholar]
  2. Barnett J. A., Payne R. W., Yarrow D. 2000 Yeasts: Characteristics and Identification , 3rd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  3. Byers B., Goetsch L. 1991; Preparation of yeast cells for thin-section electron microscopy. Methods Enzymol 194:602–608
    [Google Scholar]
  4. Cássio F., Leão C., van Uden N. 1987; Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae . Appl Environ Microbiol 53:509–513
    [Google Scholar]
  5. Cerbón J., Calderón V. 1991; Changes of the compositional asymmetry of phospholipids associated to the increment in the membrane surface potential. Biochim Biophys Acta 1067:139–144 [CrossRef]
    [Google Scholar]
  6. Darzynkiewicz Z., Juan G., Li X., Gorczyca W., Murakami T., Traganos F. 1997; Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27:1–20 [CrossRef]
    [Google Scholar]
  7. Hiraoka W., Fuma K., Kuwabara M. 1997; Concentration-dependent modes of cell death in Chinese hamster V79 cells after treatments with H2O2. J Radiat Res Tokyo 38:95–102 [CrossRef]
    [Google Scholar]
  8. Komatsu K., Hopkins K. M., Lieberman H. B., Wang H. 2000; Schizosaccharomyces pombe Rad9 contains a BH3-like region and interacts with the anti-apoptotic protein Bcl-2. FEBS Lett 481:122–126 [CrossRef]
    [Google Scholar]
  9. Leão C., van Uden N. 1986; Transport of lactate and other short-chain monocarboxylates in the yeast Candida utilis . Appl Microbiol Biotechnol 23:389–393 [CrossRef]
    [Google Scholar]
  10. Lewis K. 2000; Programmed death in bacteria. Microbiol Mol Biol Rev 64:503–514 [CrossRef]
    [Google Scholar]
  11. Ligr M., Madeo F., Frohlich E., Hilt W., Frohlich K. U., Wolf D. H. 1998; Mammalian Bax triggers apoptotic changes in yeast. FEBS Lett 438:61–65 [CrossRef]
    [Google Scholar]
  12. Longo V. D., Ellerby L., Bredesen D., Valentine J., Gralla E. 1997; Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast. J Cell Biol 137:1581–1588 [CrossRef]
    [Google Scholar]
  13. Ludovico P. 1999 Efeitos do ácido acético no potencial de membrana mitocondrial e sua relação com a perda de integridade e viabilidade celular em Zygosaccharomyces bailii e Saccharomyces cerevisiae Master thesis Universidade do Minho; Braga, Portugal:
    [Google Scholar]
  14. Madeo F., Fröhlich E., Fröhlich K. U. 1997; A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol 139:729–734 [CrossRef]
    [Google Scholar]
  15. Madeo F., Frohlich E., Ligr M., Grey M., Sigrist S. J., Wolf D. H., Frohlich K. U. 1999; Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757–767 [CrossRef]
    [Google Scholar]
  16. Martin S. J., Reutelingsperger C. P. M., McGahon A. J., Rader J. A., van Schie R. C. A. A., LaFace D. M., Green D. R. 1995; Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182:1545–1556 [CrossRef]
    [Google Scholar]
  17. Matsuyama S., Nouraini S., Reed J. 1999; Yeast as a tool for apoptosis research. Curr Opin Microbiol 2:618–623 [CrossRef]
    [Google Scholar]
  18. Naito T., Kusano K., Kobayashi I. 1995; Selfish behavior of restriction-modification systems. Science 267:897–899 [CrossRef]
    [Google Scholar]
  19. Pampulha M. E., Loureiro V. 1989; Interaction of the effects of acetic acid and ethanol on inhibition of fermentation in Saccharomyces cerevisiae . Biotechnol Lett 11:269–274 [CrossRef]
    [Google Scholar]
  20. Pinto I., Cardoso H., Leão C. 1989; High enthalpy and low enthalpy death in Saccharomyces cerevisiae induced by acetic acid. Biotechnol Bioeng 33:1350–1352 [CrossRef]
    [Google Scholar]
  21. Prudẽncio C., Sansonetty F., Cõrte-Real M. 1998; Flow cytometric assessment of cell structural and functional changes induced by acetic acid in the yeasts Zygosaccharomyces bailii and Saccharomyces cerevisiae . Cytometry 31:307–313 [CrossRef]
    [Google Scholar]
  22. Sánchez A., Álvarez A. M., Benito M., Fabregat I. 1997; Cycloheximide prevents apoptosis, reactive oxygen species production, and glutathione depletion induced by transforming growth factor β in fetal rat hepatocytes in primary culture. Hepatology 26:935–943
    [Google Scholar]
  23. Skulachev V. P. 1999a; Phenoptosis: programmed death of an organism. Biochemistry (Moscow) 64:1418–1426
    [Google Scholar]
  24. Skulachev V. P. 1999b; Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms. Mol Asp Med 20:139–184 [CrossRef]
    [Google Scholar]
  25. Skulachev V. P. 2000; Mitochondria in the programmed death phenomena; a principle of biology: ‘‘it is better to die than to be wrong’’. IUBMB Life 49:365–373 [CrossRef]
    [Google Scholar]
  26. Sun X.-M., Snowden R. T., Dinsdale D., Ormerod M., Cohen G. 1994; Changes in nuclear chromatin precede internucleosomal DNA cleavage in induction of apoptosis by etoposide. Biochem Pharmacol 47:187–195
    [Google Scholar]
  27. Yarmolinsky M. B. 1995; Programmed cell death in bacterial populations. Science 267:836–837 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-9-2409
Loading
/content/journal/micro/10.1099/00221287-147-9-2409
Loading

Data & Media loading...

Most cited Most Cited RSS feed