1887

Abstract

The gene of has been identified and found to be allelic with the previously characterized gene that encodes acetohydroxyacid synthase (AHAS). This enzyme catalyses the first step in the parallel biosyntheses of the branched-chain amino acids isoleucine and valine, using thiamin pyrophosphate (TPP) as a cofactor. The allele encodes a functional AHAS enzyme with an altered dependence for the cofactor TPP resulting in the thiamin auxotrophic phenotype. Nucleotide sequence analysis and site-directed mutagenesis revealed that the mutation is a single base substitution which causes the conserved amino acid substitution D176E in the AHAS protein. This study therefore implicates aspartate 176 as another amino acid residue important either for the efficient binding of TPP by AHAS or for the functional stability of the holoenzyme.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-9-2389
2001-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/9/1472389a.html?itemId=/content/journal/micro/10.1099/00221287-147-9-2389&mimeType=html&fmt=ahah

References

  1. Begley T. P. 1996; The biosynthesis and degradation of thiamin (vitamin-B1). Nat Prod Rep 13:177–185 [CrossRef]
    [Google Scholar]
  2. Bowman S., Churcher C., Badcock K. 18 other authors 1997; The nucleotide sequence of Saccharomyces cerevisiae chromosome XIII. Nature 378:suppl90–93
    [Google Scholar]
  3. Chang Y. Y., Cronan J. E. 1988; Common ancestry of Escherichia coli pyruvate oxidase and the acetohydroxy acid synthases of the branched-chain amino-acid biosynthetic pathway. J Bacteriol 170:3937–3945
    [Google Scholar]
  4. Chipman D., Barak Z., Schloss J. V. 1998; Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim Biophys Acta 1385401–419 [CrossRef]
    [Google Scholar]
  5. Cryer D. R., Eccleshall R., Marmur J. 1975; Isolation of yeast DNA. Methods Cell Biol 12:39–44
    [Google Scholar]
  6. Duggleby R. C., Pang S. S. 2000; Acetohydroxyacid synthase. J Biochem Mol Biol 33:1–36
    [Google Scholar]
  7. Dyda F., Furey W., Swaminathan S., Sax M., Farrenkopf B., Jordan F. 1993; Catalytic centers in the thiamin diphosphate dependent enzyme pyruvate decarboxylase at 2·4-Angstrom resolution. Biochemistry 32:6165–6170 [CrossRef]
    [Google Scholar]
  8. Estramareix B., David S. 1996; Biosynthesis of thiamine. New J Chem 20:607–629
    [Google Scholar]
  9. Falco S. C., Dumas K. S. 1985; Genetic analysis of mutants of Saccharomyces cerevisiae resistant to the herbicide sulfometuron methyl. Genetics 109:21–35
    [Google Scholar]
  10. Falco S. C., Dumas K. S., Livak K. J. 1985; Nucleotide sequence of the yeast ILV2 gene which encodes acetolactate synthase. Nucleic Acids Res 13:4011–4028 [CrossRef]
    [Google Scholar]
  11. Geitz R. D., Schiestl R. H., Willems A. R., Woods R. A. 1995; Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360 [CrossRef]
    [Google Scholar]
  12. Gough J. A., Murray N. E. 1983; Sequence diversity among related genes for recognition of specific targets in DNA molecules. J Mol Biol 166:1–19 [CrossRef]
    [Google Scholar]
  13. Hawkins C. F., Borges A., Perham R. N. 1989; A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett 255:77–82 [CrossRef]
    [Google Scholar]
  14. Hohmann S., Meacock P. A. 1998; Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae : genetic regulation. Biochim Biophys Acta 1385201–219 [CrossRef]
    [Google Scholar]
  15. Ibdah M., BarIlan A., Livnah O., Schloss J. V., Barak Z., Chipman D. M. 1996; Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis. Biochemistry 35:16282–16291 [CrossRef]
    [Google Scholar]
  16. Iwashima A., Nishino H., Nose Y. 1973; Carrier mediated transport of thiamine in baker’s yeast. Biochim Biophys Acta 330:222–234 [CrossRef]
    [Google Scholar]
  17. Kawasaki Y., Nosaka K., Kaneko Y., Nishimura H., Iwashima A. 1990; Regulation of thiamine biosynthesis in Saccharomyces cerevisiae. J Bacteriol 172:6145–6147
    [Google Scholar]
  18. Lindqvist Y., Schneider G., Ermler U., Sundstrom M. 1992; Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2·5 Angstrom resolution. EMBO J 11:2373–2379
    [Google Scholar]
  19. Mortimer R. K., Hawthorne D. C. 1966; Genetic mapping in Saccharomyces . Genetics 53:165–173
    [Google Scholar]
  20. Muller Y. A., Schultz G. E. 1993; Structure of the thiamine and flavin-dependent enzyme pyruvate oxidase. Science 259:965–967 [CrossRef]
    [Google Scholar]
  21. Nilsson U., Lindqvist Y., Kluger R., Schneider G. 1993; Crystal-structure of transketolase in complex with thiamine thiazolone diphosphate, an analog of the reaction intermediate, at 2·3 Angstrom resolution. Febs Lett 326:145–148 [CrossRef]
    [Google Scholar]
  22. Nishimura H., Kawasaki Y., Kaneko Y., Nosaka K., Iwashima A. 1992; A positive regulatory gene, THI3 , is required for thiamine metabolism in Saccharomyces cerevisiae. J Bacteriol 174:4701–4706
    [Google Scholar]
  23. Nosaka K., Nishimura H., Kawasaki Y., Tsujihara T., Iwashima A. 1994; Isolation and characterization of the THI6 gene encoding a bifunctional thiamin-phosphate pyrophosphorylase/hydroxyethylthiazole kinase from Saccharomyces cerevisiae . J Biol Chem 269:30510–30516
    [Google Scholar]
  24. Orr-Weaver T., Szostak J. 1983; Yeast recombination – the association between double-stranded gap repair and crossing-over. Proc Natl Acad Sci USA 80:4417–4421 [CrossRef]
    [Google Scholar]
  25. Polaina J. 1984; Cloning of the ILV2 , ILV3 and ILV5 genes of Saccharomyces cerevisiae . Carlsberg Res Commun 49:577–584 [CrossRef]
    [Google Scholar]
  26. Praekelt U. M., Byrne K. L., Meacock P. A. 1994; Regulation of THI4 ( MOL1 ), a thiamine biosynthetic gene of Saccharomyces cerevisiae . Yeast 10:481–490 [CrossRef]
    [Google Scholar]
  27. Rose M. D., Novic P., Thomas J. H., Botstein D., Fink G. R. 1987; A Saccharomyces cerevisiae genomic plasmid bank based on a centromere containing shuttle vector. Gene 60:237–243 [CrossRef]
    [Google Scholar]
  28. Rothstein R. J. 1983; One-step gene disruption in yeast. Methods Enzymol 101:202–211
    [Google Scholar]
  29. Ryan E. D., Kohlhaw G. B. 1974; Subcellular localization of isoleucine-valine biosynthetic enzymes in yeast. J Bacteriol 120:631–637
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Sayle R. A., Milner-White E. J. 1995; RASMOL: biomolecular graphics for all. Trends Biochem Sci 20:374–376 [CrossRef]
    [Google Scholar]
  32. Sherman F. 1991; Getting started with yeast. Methods Enzymol 194:3–21
    [Google Scholar]
  33. Suzuoki J. 1955; Thiamine uptake by yeast cells. J Biochem 42:27–39
    [Google Scholar]
  34. Wang J. J., Martin P. R., Singleton C. K. 1997; A transketolase defect in a Wernicke–Korsakoff syndrome patient. Alcohol Clin Exp Res 21:576–580 [CrossRef]
    [Google Scholar]
  35. Westerfeld W. W. 1945; A colorimetric determination of blood acetoin. J Biol Chem 161:495–502
    [Google Scholar]
  36. Wickerham L. J. 1951; Taxonomy of yeast. US Dep Agric Tech Bull 1029:11–56
    [Google Scholar]
  37. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains – nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-9-2389
Loading
/content/journal/micro/10.1099/00221287-147-9-2389
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error