1887

Abstract

Lipooligosaccharide (LOS) is a critical virulence factor of . A Tn insertion mutant, designated 469, was found to exhibit a markedly truncated LOS of 29 kDa when compared by Tricine/SDS-PAGE to the parental LOS (46 kDa). Electrospray mass spectrometry analysis of 469 LOS revealed that it consisted of the deep rough, heptose-deficient structure, Kdo-lipid A. Sequencing of chromosomal DNA flanking the Tn insertion in mutant 469 revealed that the transposon had inserted into an ORF predicted to encode a 187 aa protein with sequence homology to the histidinol-phosphate phosphatase domain of HisB and to a family of genes of unknown function. The gene, designated , is part of a polycistronic operon () containing two other genes, and encodes a lysophosphatidic-acid acyltransferase and is predicted to encode a -acetyltransferase. Specific polar and non-polar mutations in the parental strain, NMB, exhibited the truncated LOS structure of mutant 469, and repair of mutants by homologous recombination with the wild-type restored the LOS parental phenotype. GmhX mutants demonstrated increased sensitivity to polymyxin B. GmhX mutants and other Kdo-lipid A mutants also demonstrated increased sensitivity to killing by normal human serum but were not as sensitive as inner-core mutants containing heptose. In the genomes of and , homologues are associated with heptose biosynthesis genes; however, in , was found in a location distinct from that of , , , and . GmhX is a novel enzyme required for the incorporation of L--D--heptose into meningococcal LOS, and is a candidate for the 2-D--heptose phosphatase of the heptose biosynthesis pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-2367
2001-08-01
2020-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1472367a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-2367&mimeType=html&fmt=ahah

References

  1. Apicella M. A., Bennett K. M., Hermerath C. A., Roberts D. E.. 1981; Monoclonal antibody analysis of lipopolysaccharide from Neisseria gonorrhoeae and Neisseria meningitidis . Infect Immun34:751–756
    [Google Scholar]
  2. Banerjee A., Wang R., Uljon S. N., Rice P. A., Gotschlich E. C., Stein D. C.. 1998; Identification of the gene ( lgtG ) encoding the lipooligosaccharide b chain synthesizing glucosyl transferase from Neisseria gonorrhoeae . Proc Natl Acad Sci USA95:10872–10877[CrossRef]
    [Google Scholar]
  3. Brooke J. S., Valvano M. A.. 1996a; Biosynthesis of inner core lipopolysaccharide in enteric bacteria: identification and characterization of a conserved phosphoheptose isomerase. J Biol Chem271:3608–3614[CrossRef]
    [Google Scholar]
  4. Brooke J. S., Valvano M. A.. 1996b; Molecular cloning of the Haemophilus influenzae gmhA ( lpcA ) gene encoding a phosphoheptose isomerase required for lipooligosaccharide biosynthesis. J Bacteriol178:3339–3341
    [Google Scholar]
  5. Chen L., Coleman W. G. Jr. 1993; Cloning and characterization of the Escherichia coli K-12 rfa-2 ( rfaC ) gene, a gene required for lipopolysaccharide inner core synthesis. J Bacteriol175:2534–2540
    [Google Scholar]
  6. Chiariotti L., Nappo A. G., Carlomagno M. S., Bruni C. B.. 1986; Gene structure in the hisitidine operon of Escherichia coli . Identification and nucleotide sequence of the hisB gene. Mol Gen Genet202:42–47[CrossRef]
    [Google Scholar]
  7. Chung C. T., Niemela S. L., Miller R. H.. 1989; One-step preparation of competent Escherichia coli : transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA86:2172–2175[CrossRef]
    [Google Scholar]
  8. Coleman J.. 1992; Characterization of the Escherichia coli gene for 1-acyl- sn -glycerol-3-phosphate acyltransferase. Mol Gen Genet232:295–303
    [Google Scholar]
  9. Coleman W. G. Jr. 1983; The rfaD gene codes for ADP-l-glycero-d-mannoheptose-6-epimerase. An enzyme required for lipopolysaccharide core biosynthesis. J Biol Chem258:1985–1990
    [Google Scholar]
  10. Dicker I. B., Seetharam S.. 1992; What is known about the structure and function of the Escherichia coli protein FirA?. Mol Microbiol6:817–823[CrossRef]
    [Google Scholar]
  11. Drazek E. S., Stein D. C., Deal C. D.. 1995; A mutation in the Neisseria gonorrhoeae rfaD homolog results in altered lipooligosaccharide expression. J Bacteriol177:2321–2327
    [Google Scholar]
  12. Eidels L., Osborn M. J.. 1974; Phosphoheptose isomerase, first enzyme in the biosynthesis of aldoheptose in Salmonella typhimurium . J Biol Chem249:5642–5648
    [Google Scholar]
  13. Engebrecht J., Brent R.. 1996; Minipreps of plasmid DNA: alkaline lysis miniprep. In Current Protocols in Molecular Biology, unit 1.6.3 Edited by Ausubel F. M.. and others New York: Wiley;
    [Google Scholar]
  14. Erwin A. L., Stephens D. S.. 1995; Identification and characterization of auxotrophs of Neisseria meningitidis produced by Tn 916 mutagenesis. FEMS Microbiol Lett127:223–228[CrossRef]
    [Google Scholar]
  15. Galanos C., Luderitz O., Westphal O.. 1969; A new method for the extraction of R lipopolysaccharides. Eur J Biochem9:245–249[CrossRef]
    [Google Scholar]
  16. Gotschlich E. C.. 1994; Genetic locus for the biosynthesis of the variable portion of Neisseria gonorrhoeae lipooligosaccharide. J Exp Med180:2181–2190[CrossRef]
    [Google Scholar]
  17. Hughes M. J. G., Andrews D. W.. 1996; Creation of deletion, insertion and substitution mutations using a single pair of primers and PCR. BioTechniques20:188–196
    [Google Scholar]
  18. Janik A., Juni E., Heym G. A.. 1976; Genetic transformation as a tool for detection of Neisseria gonorrhoeae . J Clin Microbiol4:71–81
    [Google Scholar]
  19. Jennings M. P., Hood D. W., Peak I. R., Virji M., Moxon E. R.. 1995; Molecular analysis of a locus for the biosynthesis and phase-variable expression of the lacto- N -neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis . Mol Microbiol18:729–740[CrossRef]
    [Google Scholar]
  20. Kadrmas J. L., Raetz C. R. H.. 1998; Enzymatic synthesis of lipopolysaccharide in Escherichia coli : purification and properties of heptosyltransferase I. J Biol Chem273:2799–2807[CrossRef]
    [Google Scholar]
  21. Kahler C. M., Stephens D. S.. 1998; Genetic basis for biosynthesis, structure and function of meningococcal lipooligosaccharide (endotoxin). Crit Rev Microbiol24:281–334
    [Google Scholar]
  22. Kahler C. M., Carlson R. W., Rahman M. M., Martin L. E., Stephens D. S.. 1996a; Inner core biosynthesis of lipooligosaccharide in Neisseria meningitidis serogroup B: identification and role in LOS assembly of the 1,2 N -acetylglucosamine transferase ( rfaK ). J Bacteriol178:1265–1273
    [Google Scholar]
  23. Kahler C. M., Carlson R. W., Rahman M. M., Martin L. E., Stephens D. S.. 1996b; Two glycosyltransferase genes, lgtF and rfaK , constitute the lipooligosaccharide ice (inner core extension) biosynthesis operon of Neisseria meningitidis . J Bacteriol178:6677–6684
    [Google Scholar]
  24. Kahler C. M., Martin L. E., Shih G. C., Rahman M. M., Carlson R. W., Stephens D. S.. 1998; The (α2→8)-linked polysialic acid capsule and lipooligosaccharide structure both contribute to the ability of serogroup B Neisseria meningitidis to resist the bactericidal activity of normal human serum. Infect Immun66:5939–5947
    [Google Scholar]
  25. Lee F. K. N., Stephens D. S., Gibson B. W., Engstrom J. J., Zhou D., Apicella M. A.. 1995; Microheterogeneity of Neisseria lipooligosaccharide: analysis of a UDP-glucose 4-epimerase mutant of Neisseria meningitidis NMB. Infect Immun63:2508–2515
    [Google Scholar]
  26. Lee N.-G., Sunshine M. G., Apicella M. A.. 1995; Molecular cloning and characterization of the nontypeable Haemophilus influenzae 2019 rfaE gene required for lipopolysaccharide biosynthesis. Infect Immun63:818–824
    [Google Scholar]
  27. Lesse A. J., Campagnari A. A., Bittner W. E., Apicella M. A.. 1990; Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Immunol Methods126:109–117[CrossRef]
    [Google Scholar]
  28. Levin J. C., Stein D. C.. 1996; Cloning, complementation, and characterization of an rfaE homolog from Neisseria gonorrhoeae . J Bacteriol178:4571–4575
    [Google Scholar]
  29. Nath K.. 1990; A rapid DNA isolation procedure from petri dish grown clinical bacterial isolates. Nucleic Acids Res18:6462[CrossRef]
    [Google Scholar]
  30. Nichols W. E., Gibson B. W., Melaugh W., Lee N.-G., Sunshine M., Apicella M. A.. 1997; Identification of the ADP-l- glycero -d- manno -heptose-6-epimerase ( rfaD ) and heptosyltransferase II ( rfaF ) biosynthetic genes from nontypeable Haemophilus influenzae 2019. Infect Immun65:1377–1386
    [Google Scholar]
  31. Pegues J. C., Chen L. S., Gordon A. W., Ding L., Coleman W. G. Jr. 1990; Cloning, expression, and characterization of the Escherichia coli K-12 rfaD gene. J Bacteriol172:4652–4660
    [Google Scholar]
  32. Peschke U., Schmidt H., Zhang H. Z., Piepersberg W.. 1995; Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78–11. Mol Microbiol16:1137–1156[CrossRef]
    [Google Scholar]
  33. Polissi A., Georgopoulos C.. 1996; Mutational analysis and properties of the msbA gene of Escherichia coli , coding for an essential ABC family transporter. Mol Microbiol20:1221–1233[CrossRef]
    [Google Scholar]
  34. Prentki P., Krisch H. M.. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene29:303–313[CrossRef]
    [Google Scholar]
  35. Price N. P. J., Jeyaretnam B., Carlson R. W., Kadrmas J. L., Raetz C. R. H., Brozek K. A.. 1995; Lipid A biosynthesis in Rhizobium leguminosarum : role of a 2-keto-3-deoxyoctulosonate-activated 4′ phosphatase. Proc Natl Acad Sci USA92:7352–7356[CrossRef]
    [Google Scholar]
  36. Raetz C. R. H.. 1996; Bacterial lipopolysaccharides: a remarkable family of bioreactive macroamphiphiles. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp1035–1063 Edited by Neidhardt F. C.. and others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Rahman M. M., Stephens D. S., Kahler C. M., Glushka J., Carlson R. W.. 1998; The lipooligosaccharide (LOS) of Neisseria meningitidis serogroup B strain NMB contains L2, L3, and novel oligosaccharides, and lacks the lipid-A 4′-phosphate substituent. Carbohydr Res307:311–324[CrossRef]
    [Google Scholar]
  38. Robbins A., Freeman P.. 1988; Obstacles to developing vaccines for the third world. Sci Am259:90–95
    [Google Scholar]
  39. Schagger H., von Jagow G.. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem166:368–379[CrossRef]
    [Google Scholar]
  40. Schnaitman C. A., Klena J. D.. 1993; Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev57:655–682
    [Google Scholar]
  41. Shafer W. M., Guymon L. F., Lind I., Sparling P. F.. 1984; Identification of an envelope mutation ( env-10 ) resulting in increased antibiotic susceptibility and pyocin resistance in a clinical isolate of Neisseria gonorrhoeae . Antimicrob Agents Chemother25:767–769[CrossRef]
    [Google Scholar]
  42. Shih G., Kahler C., Swartley J., Coleman J., Rahman M., Carlson R., Stephens D.. 1999; Multiple lysophosphatidic acid acyltransferases in Neisseria meningitidis . Mol Microbiol32:942–952[CrossRef]
    [Google Scholar]
  43. Shyamala V., Ames G. F.-L.. 1989; Genome walking by single-specific-primer polymerase chain reaction: SSP-PCR. Gene84:1–8[CrossRef]
    [Google Scholar]
  44. Sirisena D. M., Brozek K. A., MacLachlan P. R., Sanderson K. E., Raetz C. R.. 1992; The rfaC gene of Salmonella typhimurium : cloning, sequencing, and enzymatic function in heptose transfer to lipopolysaccharide. J Biol Chem267:18874–18884
    [Google Scholar]
  45. Sirisena D. M., MacLachlan P. R., Liu S.-l., Hessel A., Sanderson K. E.. 1994; Molecular analysis of the rfaD gene, for heptose synthesis, and the rfaF gene, for heptose transfer, in lipopolysaccharide synthesis in Salmonella typhimurium . J Bacteriol176:2379–2385
    [Google Scholar]
  46. Steeghs L., Jennings M. P., Poolman J. T., van der Ley P.. 1997; Isolation and characterization of the Neisseria meningitidis lpxD-fabZ-lpxA gene cluster involved in lipid A biosynthesis. Gene190:263–270[CrossRef]
    [Google Scholar]
  47. Stephens D. S., Swartley J. S., Kathariou S., Morse S. A.. 1991; Insertion of Tn 916 in Neisseria meningitidis resulting in loss of group B capsular polysaccharide. Infect Immun59:4097–4102
    [Google Scholar]
  48. Stephens D. S., McAllister C. F., Zhou D., Lee F. K., Apicella M. A.. 1994; Tn 916 -generated, lipooligosaccharide mutants of Neisseria meningitidis and Neisseria gonorrhoeae . Infect Immun62:2947–2952
    [Google Scholar]
  49. Swartley J. S., McAllister C. F., Hajjeh R. A., Heinrich D. W., Stephens D. S.. 1993; Deletions of Tn 916 -like transposons are implicated in tetM -mediated resistance in pathogenic Neisseria . Mol Microbiol10:299–310[CrossRef]
    [Google Scholar]
  50. Takahashi K., Fukada M., Kawai M., Yokochi T.. 1992; Detection of lipopolysaccharide (LPS) and identification of its serotype by an enzyme-linked immunosorbent assay (ELISA) using poly-l-lysine. J Immunol Methods153:67–71[CrossRef]
    [Google Scholar]
  51. Tikhomirov E., Santamaria M., Esteves K.. 1997; Meningococcal disease: public health burden and control. World Health Stat Q50:170–177
    [Google Scholar]
  52. Tunkel A. R., Scheld W. M.. 1993; Pathogenesis and pathophysiology of bacterial meningitis. Clin Microbiol Rev6:118–136
    [Google Scholar]
  53. Valvano M.. 1999; Biosynthesis and genetics of ADP-heptose. J Endotox Res5:90–95[CrossRef]
    [Google Scholar]
  54. Valvano M., Marolda C. L., Bittner M., Glaskin-Clay M., Simon T. L., Lkena J. D.. 2000; The rfaE gene from Escherichia coli encodes a biofunctional protein involved in biosynthesis of the lipopolysaccharide core precursor ADP-l- glycero -d- manno -heptose. J Bacteriol182:488–497[CrossRef]
    [Google Scholar]
  55. Vuorio R., Harkonen T., Tolvane M., Vaara M.. 1994; The novel hexapeptide motif found in the acyltransferases LpxA and LpxD of lipid A biosynthesis is conserved in various bacteria. FEBS Lett337:289–292[CrossRef]
    [Google Scholar]
  56. Walker J. E., Saraste M., Runswick M. J., Gay N. J.. 1982; Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases, and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J1:945–951
    [Google Scholar]
  57. Wilkinson R. G., Stocker B. A., Gemski P. Jr. 1972; Non-smooth mutants of Salmonella typhimurium : differentiation by phage sensitivity and genetic mapping. J Gen Microbiol70:527–554[CrossRef]
    [Google Scholar]
  58. Zhou D., Stephens D. S., Gibson B. W., Engstrom J. J., McAllister C. F., Lee F. K. N., Apicella M. A.. 1994; Lipooligosaccharide biosynthesis in pathogenic Neisseria : cloning, identification, and characterization of the phosphoglucomutase gene. J Biol Chem269:11162–11169
    [Google Scholar]
  59. Zhou Z., White K. A., Polissi A., Georgopoulos C., Raetz C. R.. 1998; Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J Biol Chem273:12466–12475[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-8-2367
Loading
/content/journal/micro/10.1099/00221287-147-8-2367
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error