1887

Abstract

Erp (xported epeated rotein) was originally characterized as a virulence factor in and was thought to be present only in and members of the TB complex. Here it is shown that Erp is a ubiquitous extracellular protein found in all of the mycobacterial species tested. Erp proteins have a modular organization and contain three domains: a highly conserved amino-terminal domain which includes a signal sequence, a central variable region containing repeats based on the motif PGLTS, and a conserved carboxy-terminal domain rich in proline and alanine. The number and fidelity of PGLTS repeats of the central region differ considerably between mycobacterial species. This region is, however, identical in all of the clinical strains tested. In addition, it is shown here that a :: mutant displays altered colony morphology which is complemented by all the Erp orthologues tested. The genome sequence flanking the gene includes cell-wall-related ORFs and displays extensive conservation between saprophytic and pathogenic mycobacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-2315
2001-08-01
2021-10-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1472315a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-2315&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Shaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of database search programs. Nucleic Acids Res 17:3389–3402
    [Google Scholar]
  2. Armitige L. Y., Chinnaswamy J., Wanger A. R., Norris S. J. 2000; Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and macrophages. Infect Immun 68:767–778 [CrossRef]
    [Google Scholar]
  3. Berthet F.-X., Rauzier J., Lim E. M., Philipp B., Gicquel B., Portnoı̈ D. 1995; Characterization of the Mycobacterium tuberculosis erp gene encoding a potential cell surface protein with repetitive structures. Microbiology 141:2123–2130 [CrossRef]
    [Google Scholar]
  4. Berthet F.-X., Lagranderie M., Gounon P. 9 other authors 1998; Attenuation of virulence by disruption of Mycobacterium tuberculosis erp gene. Science 282:759–762 [CrossRef]
    [Google Scholar]
  5. Bigi F., Alito A., Fisanotti J. C., Romano M. I., Cataldi A. 1995; Characterization of a novel Mycobacterium bovis secreted antigen containing PGLTS repeats . . Infect Immun 63:2581–2586
    [Google Scholar]
  6. Bigi F., Taboga O., Romano M. I., Alito A., Fisanotti J. C., Cataldi A. 1999; Expression of the Mycobacterium bovis P36 gene in M. smegmatis and the baculovirus/insect cell system. Braz J Med Biol Res 32:29–37
    [Google Scholar]
  7. Camacho L. R., Ensergueix D., Perez E., Gicquel B., Guilhot B. 1999; Identification of a virulence gene cluster of M. tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34:257–267 [CrossRef]
    [Google Scholar]
  8. Cherayil B. G., Young R. A. 1988; A 28 kDa protein from Mycobacterium leprae is a target of the human antibody response in lepromatous leprosy. J Immunol 141:4370–4375
    [Google Scholar]
  9. Cole S. T., Brosch R., Parkhill J. 38 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  10. Corpet F., Servant F., Gouzy J., Kahn D. 2000; ProDom and ProDom-CG: tools for protein domain analysis and whole genome comparisons. Nucleic Acids Res 28:267–269 [CrossRef]
    [Google Scholar]
  11. Cox J. S., Chen B., McNeil M., Jacobs W. R. 1999; Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402:79–83 [CrossRef]
    [Google Scholar]
  12. Glickman M. S., Cox J. S., Jacobs W. R. 2000; A novel mycolic acid cyclopropane synthetase is required for coding, persistence and virulence of Mycobacterium tuberculosis . Mol Cell 5:717–727 [CrossRef]
    [Google Scholar]
  13. Goguet de la Salmonière Y. O. 1999; Protéines exportées de Mycobacterium tuberculosis pour l’étude des interactions avec l’ho̧te et méthodologie pour l’épidémiologie moléculaire. PhD thesisUniversity of Paris
    [Google Scholar]
  14. Laemmli U.K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  15. Lim E. M., Rauzier J., Timm J., Torrea G., Murray A., Gicquel B., Portnoı̈ D. 1995; Identification of Mycobacterium tuberculosis DNA sequences encoding exported proteins, using phoA gene fusions. J Bacteriol 177:59–65
    [Google Scholar]
  16. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence analysis. Proc Natl Acad Sci USA 85:2444–2448 [CrossRef]
    [Google Scholar]
  17. Pelicic V., Reyrat J.-M., Gicquel B. 1996; Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable suicide vectors. Mol Microbiol 20:919–925 [CrossRef]
    [Google Scholar]
  18. Sauton B. 1912; Sur la nutrition minérale du bacille tuberculeux. C R Acad Sci Ser III Sci Vie 135:860–863
    [Google Scholar]
  19. Taylor L. A., Rose R. E. 1988; A correction in the nucleotide sequence of the Tn903 kanamycin resistance determinant in pUC4K. Nucleic Acids Res 16:358 [CrossRef]
    [Google Scholar]
  20. Weston A., Stern R. J., Lee R. E. 7 other authors 1998; Biosynthetic origin of mycobacterial cell wall galactofuranosyl residues. Tuber Lung Dis 78:123–131 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-8-2315
Loading
/content/journal/micro/10.1099/00221287-147-8-2315
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error