1887

Abstract

Identifying genes that are differentially expressed by BCG after phagocytosis by macrophages will facilitate the understanding of the molecular mechanisms of host cell–intracellular pathogen interactions. To identify such genes a cDNA–total RNA subtractive hybridization strategy has been used that circumvents the problems both of limited availability of bacterial RNA from models of infection and the high rRNA backgrounds in total bacterial RNA. The subtraction products were used to screen a high-density gridded genomic library. Sequence data were obtained from 19 differential clones, five of which contained overlapping sequences for the gene encoding mycocerosic acid synthase (). Mas is an enzyme involved in the synthesis of multi-methylated long-chain fatty acids that are part of phthiocerol dimycocerosate, a major component of the complex mycobacterial cell wall. Northern blotting and primer extension data confirmed up-regulation of in intracellular mycobacteria and also revealed a putative extended −10 promoter structure and a long untranslated upstream region 5′ of the transcripts, containing predicted double-stranded structures. Furthermore, clones containing overlapping sequences for , , and were identified and the up-regulation of these genes was confirmed by Northern blot analysis. The cDNA–RNA subtractive hybridization enrichment and high density gridded library screening, combined with selective extraction of bacterial mRNA represents a valuable approach to the identification of genes expressed during intra-macrophage residence for bacteria such as BCG and the pathogenic mycobacterium,

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-2293
2001-08-01
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1472293a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-2293&mimeType=html&fmt=ahah

References

  1. Alavi M. R., Affronti L. F. 1994; Induction of mycobacterial proteins during phagocytosis and heat shock: a time interval analysis. J Leukoc Biol 55:633–641
    [Google Scholar]
  2. Alland D., Kramnik I., Weisbrod T. R., Cerny R., Miller L. P., Bloom B. R., Jacobs W. R. Jr 1998; Identification of differentially expressed mRNA in prokaryotic organisms by customized amplification libraries (DECAL): The effect of isoniazid on gene expression in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 95:13227–13232 [CrossRef]
    [Google Scholar]
  3. Bashyam M. D., Tyagi A. K. 1998; Identification and analysis of ‘‘extended −10’’ promoters from mycobacteria. J Bacteriol 180:2568–2573
    [Google Scholar]
  4. Behr M. A., Wilson M. A., Gill W. P., Salamon H., Schoolnik G. K., Rane S., Small P. M. 1999; Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520–1523 [CrossRef]
    [Google Scholar]
  5. Bercovier H., Kafri O., Sela S. 1986; Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem Biophys Res Commun 136:1136–1141 [CrossRef]
    [Google Scholar]
  6. Bertram J., Palfner K., Hiddemann W., Kneba M. 1998; Overexpression of ribosomal proteins L4 and L5 and the putative alternative elongation factor PTI-1 in the doxorubicin resistant human colon cancer cell line LoVoDxR. Eur J Cancer 34:732–736
    [Google Scholar]
  7. Burns H. D., Belyaeva T. A., Busby S. J., Minchin S. D. 1996; Temperature-dependence of open-complex formation at two Escherichia coli promoters with extended −10 sequences. Biochem J 317:305–311
    [Google Scholar]
  8. Butcher P. D., Mangan J. A., Monahan I. M. 1998; Intracellular gene expression. Analysis of RNA from mycobacteria in macrophages using RT-PCR. Methods Mol Biol 101:285–306
    [Google Scholar]
  9. Camacho L. R., Ensergueix D., Perez E., Gicquel B., Guilhot C. 1999; Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34:257–267 [CrossRef]
    [Google Scholar]
  10. Clark-Curtiss J. E. 1998; Identification of virulence determinants in pathogenic mycobacteria. Curr Top Microbiol Immunol 225:57–79
    [Google Scholar]
  11. Cole S. T., Brosch R., Parkhill J. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  12. Cox J. S., Chen B., McNeil M., Jacobs W. R. Jr 1999; Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402:79–83 [CrossRef]
    [Google Scholar]
  13. Cunningham A. F., Spreadbury C. L. 1998; Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton alpha-crystallin homolog. J Bacteriol 180:801–808
    [Google Scholar]
  14. Dolin P. J., Raviglone M. C., Kochi A. 1994; Global tuberculosis incidence and mortality during 1990–2000. Bull WHO 72:213–220
    [Google Scholar]
  15. Escolar L., Perez-Martin J., de Lorenzo V. 1999; Opening the iron Box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229
    [Google Scholar]
  16. Fitzmaurice A. M., Kolattukudy P. E. 1998; An acyl-CoA synthase ( acoas ) gene adjacent to the mycocerosic acid synthase ( mas ) locus is necessary for mycocerosyl lipid synthesis in Mycobacterium tuberculosis var. bovis BCG. J Biol Chem 273:8033–8039 [CrossRef]
    [Google Scholar]
  17. Graham J. E., Clark-Curtiss J. E. 1999; Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci USA 96:11554–11559 [CrossRef]
    [Google Scholar]
  18. Henkin T. M., Moon S. H., Mattheakis L. C., Nomura M. 1989; Cloning and analysis of the spc ribosomal protein operon of Bacillus subtilis : comparison with the spc operon of Escherichia coli.. Nucleic Acids Res 25:7469–7486
    [Google Scholar]
  19. Higgins C. F. 1991; Stability and degradation of mRNA. Curr Opin Cell Biol 3:1013–1018 [CrossRef]
    [Google Scholar]
  20. Hubank M., Schatz D. G. 1994; Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acid Res 22:5640–5648 [CrossRef]
    [Google Scholar]
  21. Kinger A. K., Tyagi J. S. 1993; Identification and cloning of genes differentially expressed in the virulent strain of Mycobacterium tuberculosis. . Gene 131:113–117 [CrossRef]
    [Google Scholar]
  22. Kolattukudy P. E., Fernandes N. D., Azad A. K., Fitzmaurice A. M., Sirakova T. D. 1997; Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol Microbiol 24:263–270 [CrossRef]
    [Google Scholar]
  23. Lee B.-Y., Horowitz M. A. 1995; Identification of macrophage and stress-induced proteins of Mycobacterium tuberculosis. . J Clin Invest 96:245–249 [CrossRef]
    [Google Scholar]
  24. Lindahl L., Zengel J. M. 1986; Ribosomal genes in Escherichia coli. . Annu Rev Genet 20:297–326 [CrossRef]
    [Google Scholar]
  25. Mangan J. A., Butcher P. D. 1998; Analysis of mycobacterial differential gene expression by RAP-PCR. Methods Mol Biol 101:307–322
    [Google Scholar]
  26. Mangan J. A., Sole K. M., Mitchison D. A., Butcher P. D. 1997; An effective method of RNA extraction from bacteria refractory to disruption, including mycobacteria. Nucleic Acid Res 25:675–676 [CrossRef]
    [Google Scholar]
  27. Mattheakis L. C., Nomura M. 1988; Feedback regulation of the spc operon in Escherichia coli : translational coupling and mRNA processing. J Bacteriol 170:4484–4492
    [Google Scholar]
  28. Mekalanos J. J. 1992; Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol 174:1–7
    [Google Scholar]
  29. Minnikin D. E. 1982; Lipids: Complex lipids, their chemistry, biosynthesis and roles. In The Biology of Mycobacteria pp 95–184 Edited by Ratledge C., Stanford J. San Diego: Academic Press;
    [Google Scholar]
  30. Monahan I. M., Betts J., Banerjee D. K., Butcher P. D. 2001; Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology 147:459–471
    [Google Scholar]
  31. Patel B. K., Banerjee D. K., Butcher P. D. 1991; Characterization of the heat shock response in Mycobacterium bovis BCG. J Bacteriol 173:7982–7987
    [Google Scholar]
  32. Plum G., Clark-Curtiss J. E. 1994; Induction of Mycobacterium avium gene expression following phagocytosis by human macrophages. Infect Immun 62:476–483
    [Google Scholar]
  33. Ponnambalam S., Webster C., Bingham A., Busby S. 1986; Transcription initiation at the Escherichia coli galactose operon promoters in the absence of the normal −35 region sequences. J Biol Chem 261:16043–16048
    [Google Scholar]
  34. Rainwater D. L., Kolattukudy P. E. 1985; Fatty acid biosynthesis in Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guerin . Purification and characterization of a novel fatty acid synthase, mycocerosic acid synthase, which elongates n-fatty acyl-CoA with methylmalonyl-CoA. J Biol Chem 260:616–623
    [Google Scholar]
  35. Raviglione M. C., Snider D. E. Jr, Kochi A. 1995; Global epidemiology of tuberculosis: Morbidity and mortality of a worldwide epidemic. JAMA 273:220–226 [CrossRef]
    [Google Scholar]
  36. Rivera-Marrero C. A., Burroughs M. A., Masse R. A., Vannberg F. O., Leimbach D. L., Roman J., Murtagh J. J. Jr 1998; Identification of genes differentially expressed in Mycobacterium tuberculosis by differential display PCR. Microb Pathog 25:307–316 [CrossRef]
    [Google Scholar]
  37. Robinson K. A., Robb F. T., Schreier H. J. 1994; Isolation of maltose-regulated genes from the hyperthermophilic archaeum, Pyrococcus furiosus , by subtractive hybridization. Gene 148:137–141 [CrossRef]
    [Google Scholar]
  38. Rook G. A. W., Bloom B. R. 1994; Mechanisms of pathogenesis in tuberculosis. In Tuberculosis: Pathogenesis, Protection and Control pp 485–501 Edited by Bloom B. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  41. Scholnick J., Sinor C., Oakes J., Outten W., Saha M. 1997; Differential expression of Xenopus ribosomal protein gene XlrpS1c. . Biochim Biophys Acta 1354:72–82 [CrossRef]
    [Google Scholar]
  42. Sturgill-Koszycki S., Haddix P. L., Russell D. G. 1997; The interaction between Mycobacterium and the macrophage analyzed by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 18:2558–2565 [CrossRef]
    [Google Scholar]
  43. Utt E. A., Brousal J. P., Kikuta-Oshima L. C., Quinn F. D. 1995; The identification of bacterial gene expression differences using mRNA-based isothermal subtractive hybridization. Can J Microbiol 41:152–156 [CrossRef]
    [Google Scholar]
  44. Wilson M., DeRisi J., Kristensen H. H., Imboden P., Rane S., Brown P. O., Schoolnik G. K. 1999; Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci USA 96:12833–12838 [CrossRef]
    [Google Scholar]
  45. Wong D. K., Lee B. Y., Horwitz M. A., Gibson B. W. 1999; Identification of Fur, aconitase, and other proteins expressed by Mycobacterium tuberculosis under conditions of low and high concentrations of iron by combined two-dimensional gel electrophoresis and mass spectrometry. Infect Immun 67:327–336
    [Google Scholar]
  46. Wu G., Su S., Bird R. C. 1994; Optimization of subtractive hybridization in construction of subtractive cDNA libraries. Genet Anal Tech Appl 11:29–33 [CrossRef]
    [Google Scholar]
  47. Yuan Y., Zhu Y., Crane D. D., Barry C. E.III. 1998; The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. . Mol Microbiol 29:1449–1458 [CrossRef]
    [Google Scholar]
  48. Zuker M. 1989; On finding all suboptimal foldings of an RNA molecule. Science 244:48–52 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/00221287-147-8-2293
Loading
/content/journal/micro/10.1099/00221287-147-8-2293
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error