1887

Abstract

The fundamental question in this study is concerned with whether the increase of unsaturated fatty acids in the cell membrane is a general response of certain thermotolerant strains or species when exposed to superoptimal temperatures, and in combination with other stresses, especially oxidative stress. A strain of , a species widely used as a starter in the dairy industry and able to tolerate high temperature and NaCl concentrations as well as acidic conditions, was chosen for this study. Cells of strain CNBL 1156, grown in its natural medium (i.e. milk whey), were exposed for 100 min to sublethal combinations of temperature, NaCl, HO and pH, modulated according to a Central Composite Design. The fatty acid composition of cell lipid extract was identified by GC/MS. Polynomial equations, able to describe the individual interactive and quadratic effects of the independent variables on cell fatty acid composition, were obtained. The results and the mathematical models relative to the individual fatty acids indirectly suggest that desaturase activation or hyperinduction play an important role in the response to heat stress. In fact, the relative proportions of oleic, linoleic and palmitic acids increased with temperature in a range between 38 and 54 °C. The fatty acid profiles included vernolic acid (up to 37% of total fatty acids), an epoxide of linoleic acid not previously reported in microbial cells. In particular, this epoxide was present in cells exposed to low pH in combination with high temperatures and oxidative stress. In conclusion, these results provide experimental support to the hypothesis that the increase of an oxygen-consuming desaturase system, with a consequent increase in fatty acid desaturation, is a cellular response to environmental stresses able to protect the cells of this anaerobic micro-organism from toxic oxygen species and high temperatures.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-2255
2001-08-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1472255a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-2255&mimeType=html&fmt=ahah

References

  1. Aguilar P. S., Cronan J. E., de Mendoza D. 1998; A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J Bacteriol 180:2194–2200
    [Google Scholar]
  2. Brown J. L., Ross T., McMeekin T. A., Nichols P. D. 1997; Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int J Food Microbiol 37:163–173 [CrossRef]
    [Google Scholar]
  3. Chatterjee M. T., Seunath A., Khalawan S. A., Curran B. P. G. 2000; Cellular lipid composition influences stress activation of the yeast general stress response elements (STRE). Microbiology 146:877–884
    [Google Scholar]
  4. Cocconcelli P. S., Parisi M. G., Senini L., Bottazzi V. 1997; Use of RAPD and 16S rDNA sequencing for the study of Lactobacillus population dynamics in natural whey culture. Lett Appl Microbiol 25:8–12 [CrossRef]
    [Google Scholar]
  5. Cronan J. E., Gelmann E. P. 1975; Physical properties of membrane lipids: biological relevance and regulation. Bacteriol Rev 39:232–256
    [Google Scholar]
  6. Decallone J., Delmee M., Wauthoz P., El lioul M., Lambert R. 1991; A rapid procedure for the identification of lactic acid bacteria based on the gas chromatographic analysis of cellular fatty acids. J Food Prot 54:217–224
    [Google Scholar]
  7. Di Russo C. C., Black P. N., Weimar J. D. 1999; Molecular in road into the regulation and metabolism of fatty acids, lessons from bacteria. Prog Lipid Res 38:129–197 [CrossRef]
    [Google Scholar]
  8. Dionisi F., Golay P. A., Elli M., Fay L. B. 1999; Stability of cyclopropane and conjugated linoleic acids during fatty acid quantification in lactic acid bacteria. Lipids 34:1107–1115 [CrossRef]
    [Google Scholar]
  9. Dodd C. R. E., Sharman R. L., Bloomfield S. F., Booth I. R., Stewart G. S. A. B. 1997; Inimical processes: bacterial self-destruction and sub-lethal injury. Trends Food Sci Technol 8:238–244 [CrossRef]
    [Google Scholar]
  10. Dykes G. A., Cloete T. E., von Holy A. 1995; Taxonomy of lactic acid bacteria associated with vacuum-packaged meat spoilage by multivariate analysis of cellular fatty acids. Int J Food Microbiol 28:89–100 [CrossRef]
    [Google Scholar]
  11. Evans R. I., McClure P. J., Gould G. W., Russell N. J. 1998; The effect of temperature on phospholipid and fatty acyl composition of non-proteolytic Clostridium botulinum. . Int J Food Microbiol 40:159–167 [CrossRef]
    [Google Scholar]
  12. Francis G. L., Regester G. O., Webb H. A., Ballard F. J. 1995; Extraction from cheese whey by cation-exchange chromatography of factors that stimulate the growth of mammalian cells. J Dairy Sci 78:1209–1218 [CrossRef]
    [Google Scholar]
  13. Fulko A. J. 1983; Fatty acid metabolism in bacteria. Prog Lipid Res 22:133–160 [CrossRef]
    [Google Scholar]
  14. Guerzoni M. E., Ferruzzi M., Sinigaglia M., Criscuoli G. C. 1997; Increased cellular fatty acid desaturation as a possible key factor in thermotolerance in Saccharomyces cerevisiae . Can J Microbiol 43:569–576 [CrossRef]
    [Google Scholar]
  15. Guillot A., Obis D., Mistou M. Y. 2000; Fatty acid composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress. Int J Food Microbiol 55:47–51 [CrossRef]
    [Google Scholar]
  16. Herold M., Spiteller G. 1996; Enzymatic production of hydroperoxides of unsaturated fatty acids by injury of mammalian cells. Chem Phys Lipids 79:113–121 [CrossRef]
    [Google Scholar]
  17. Howlett N. G., Avery S. V. 1997; Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol 63:2971–2979
    [Google Scholar]
  18. Johnsson T., Nikkila P., Toivonen L., Rosenqvist H., Laakso S. 1995; Cellular fatty acid profiles of Lactobacillus and Lactococcus strains in relation to oleic acid content of the cultivation medium. Appl Environ Microbiol 61:4497–4499
    [Google Scholar]
  19. Keweloh H., Heipieper H. J. 1996; Trans unsaturated fatty acids in bacteria. Lipids 31:129–136 [CrossRef]
    [Google Scholar]
  20. Leak D. J., Ajken P. J., Seyed-Mahmoudian M. 1992; The microbial production of epoxides. Trends Biotechnol 10:256–261 [CrossRef]
    [Google Scholar]
  21. Lonvaud-Funel A., Desens C. 1990; Constitution en acides gras des membranes des bactéries lactiques du vin. Sci Aliments 10:3362–3364
    [Google Scholar]
  22. Moradas-Ferreira P., Costa V., Piper P., Mager W. 1996; The molecular defences against reactive oxygen species in yeast. Mol Microbiol 19:651–658 [CrossRef]
    [Google Scholar]
  23. Morrison W. R., Smith L. M. 1964; Proportion of fatty acids methyl esters and methyl acetals from lipids with boron fluoride-methanol. J Lipid Res 5:600–608
    [Google Scholar]
  24. Okuley J., Lightner J., Feldmann K., Yadav N., Lark E., Browse J. 1994; Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158 [CrossRef]
    [Google Scholar]
  25. Perry C. K. 1964 Perry’s Chemical Engineers’ Handbook , 4th edn. New York: McGraw-Hill;
    [Google Scholar]
  26. Piper P. W. 1995; The heat shock and ethanol stress responses of yeast exhibited extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127 [CrossRef]
    [Google Scholar]
  27. Rabinowitch H. D., Sklan D., Chace D. H., Stevens R. D., Fridovich I. 1993; Escherichia coli produces linoleic acid during late stationary phase. J Bacteriol 175:5324–5328
    [Google Scholar]
  28. Ratledge C., Wilkinson S. G. editors 1989 Microbial Lipids vol. 2 London: Academic Press;
    [Google Scholar]
  29. Rattray J. B. M. 1988; Yeast. In Microbial Lipids vol. 1 pp 557–697 Edited by Ratledge C., Wilkinson S. G. London: Academic Press;
    [Google Scholar]
  30. Rees C. E. D., Dodd C. E. R., Gibson P. T., Booth I. R., Stewart G. S. A. B. 1995; The significance of bacteria in stationary phase to food microbiology. Int J Food Microbiol 28:263–275 [CrossRef]
    [Google Scholar]
  31. Russell N. J., Fukanaga M. 1990; A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol Rev 75:171–182 [CrossRef]
    [Google Scholar]
  32. Russell N. J., Evans R. I., TerSeeg P. F., Hellemons J., Verheul A., Abee T. 1995; Membrane as a target for stress adaptation. Int J Food Microbiol 28:255–261 [CrossRef]
    [Google Scholar]
  33. Schnell N., Krems B., Entian K. D. 1992; The PARI (YAP1/SN Q3) gene of Saccharomyces cerevisiae , a c-jun homologue, is involved in oxygen metabolism. Curr Genet 21:269–273 [CrossRef]
    [Google Scholar]
  34. Smeds A., Varmanen P., Palva A. 1998; Molecular characterization of a stress-inducible gene from Lactobacillus helveticus . J Bacteriol 18:6148–6153
    [Google Scholar]
  35. Spiteller G. 1996; Enzymic lipid peroxidation – a consequence of cell injury?. Free Radic Biol Med 21:1003–1009 [CrossRef]
    [Google Scholar]
  36. Steels E. S., Learmonth R. P., Watson K. 1994; Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically and anaerobically. Microbiology 140:569–576 [CrossRef]
    [Google Scholar]
  37. Suutari M., Laakso S. 1992; Temperature adaptation in Lactobacillus fermentum : interconversion of oleic, vaccenic and dihydrosterculic acid. J Gen Microbiol 138:445–450 [CrossRef]
    [Google Scholar]
  38. Suutari M., Laakso S. 1994; Microbial fatty acid and thermal adaptation. Crit Rev Microbiol 20:285–328 [CrossRef]
    [Google Scholar]
  39. Suutari M., Linkkonen K., Laakso S. 1990; Temperature adaptation in yeast: the role of fatty acids. J Gen Microbiol 136:1469–1474 [CrossRef]
    [Google Scholar]
  40. Swaving J., de Bont J. A. M. 1998; Microbial transformation of epoxides. Enzyme Microb Technol 22:19–26 [CrossRef]
    [Google Scholar]
  41. Torok Z., Horvath I., Goloubinoff P., Kovacs E., Glatz A., Balogh G., Vigh L. 1997; Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. Proc Natl Acad Sci USA 94:2192–2197 [CrossRef]
    [Google Scholar]
  42. Van de Vossenberg J. L. C. M., Driessen A. J. M., Konings W. N., da Costa M. S. 1999; Homeostasis of the membrane proton permeability in Bacillus subtilis grown at different temperatures. Biochim Biophys Acta 141997–104 [CrossRef]
    [Google Scholar]
  43. Wijeyaratne S. C., Ohta K., Chavanichi S., Mahamontri V., Nilubol N., Hayashida S. 1986; Lipid composition of a thermotolerant yeast Hansenula polymorpha . Agric Biol Chem 50:827–832 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-8-2255
Loading
/content/journal/micro/10.1099/00221287-147-8-2255
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error