1887

Abstract

mutant 62004 carries a null allele of , encoding the E1β subunit of pyruvate dehydrogenase, which converts pyruvate to acetyl-CoA. This mutant completely lacks pyruvate oxidation activities yet grows aerobically on C dicarboxylates (succinate, L-malate) as sole energy source, albeit slowly, and displays pleiotropic growth defects consistent with physiological acetyl-CoA limitation. Temperature-sensitive (ts), conditional-lethal derivatives of the mutant lack (methyl)malonate semialdehyde dehydrogenase activity, which thus also allows L-malate conversion to acetyl-CoA. The mutant remains able to fix N in aerobic culture, but is unable to fix N in symbiosis with host plants and cannot grow microaerobically. In culture, wild-type can use acetate, β-D-hydroxybutyrate and nicotinate – all direct precursors of acetyl-CoA – as sole C and energy source for aerobic, but not microaerobic growth. Paradoxically, acetyl-CoA is thus a required intermediate for microaerobic oxidative energy transduction while not itself oxidized. Accordingly, energy transduction under aerobic and microaerobic conditions is qualitatively different.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-2233
2001-08-01
2021-07-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1472233a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-2233&mimeType=html&fmt=ahah

References

  1. Bergersen F. J., Turner G. L. 1990; Bacteroids from soybean root nodules: accumulation of poly-β-hydroxybutyrate during supply of malate and succinate in relation to N2 fixation in flow-chamber reactions. Proc R Soc Lond B 240:39–59 [CrossRef]
    [Google Scholar]
  2. Bergersen F., Turner G. L., Bogusz D., Wu Y.-Q., Appleby C. A. 1986; Effects of O2 concentrations on respiration and nitrogenase activity of bacteroids from stem and root nodules of Sesbania rostrata and of the same bacteria from continuous culture. J Gen Microbiol 132:3325–3336
    [Google Scholar]
  3. Bernovsky C., Swan M. 1973; An improved cycling assay for nicotinamide adenine dinucleotide. Anal Biochem 53:452–458 [CrossRef]
    [Google Scholar]
  4. Buckmiller L. M., Lapointe J. P., Ludwig R. A. 1991; Physical mapping of the Azorhizobium caulinodans nicotinate catabolism genes and characterization of their importance to N2 fixation. J Bacteriol 173:2017–2025
    [Google Scholar]
  5. Cabanes D., Boistard P., Batut J. 2000; Symbiotic induction of pyruvate dehydrogenase genes from Sinorhizobium meliloti . Mol Plant–Microbe Interact 13:483–493 [CrossRef]
    [Google Scholar]
  6. Ditta G. 1986; Tn 5 mapping of Rhizobium nitrogen fixation genes. Methods Enzymol 118:519–528
    [Google Scholar]
  7. Donald R. G. K., Raymond C. K., Ludwig R. A. 1985; Vector insertion mutagenesis of Rhizobium sp. strain ORS571: direct cloning of mutagenised DNA sequences. J Bacteriol 162:317–323
    [Google Scholar]
  8. Donald R. G. K., Nees D., Raymond C. K., Loroch A. I., Ludwig R. A. 1986; Three genomic loci encode Rhizobium sp . ORS571 N2 fixation genes. J Bacteriol 165:72–81
    [Google Scholar]
  9. Dreyfus B. L., Dommergues Y. R. 1981; Nitrogen fixing nodules induced by Rhizobium on stems of the tropical legume Sesbania rostrata . FEMS Microbiol Lett 10:313–317 [CrossRef]
    [Google Scholar]
  10. Driscoll B. T., Finan T. M. 1993; NAD-dependent malic enzyme of Rhizobium meliloti is required for symbiotic nitrogen fixation. Mol Microbiol 7:865–873 [CrossRef]
    [Google Scholar]
  11. Finan T. M., Wood J. M., Jordan D. C. 1981; Succinate transport in Rhizobium leguminosarum . J Bacteriol 148:193–202
    [Google Scholar]
  12. Finan T. M., Wood J. M., Jordan D. C. 1983; Symbiotic properties of C4-dicarboxylic acid transport mutants of Rhizobium leguminosarum . J Bacteriol 154:1403–1413
    [Google Scholar]
  13. Green L. S., Li Y., Emerich D. W., Bergersen F. J., Day D. A. 2000; Catabolism of α-ketoglutarate by a sucA mutant of Bradyrhizobium japonicum : evidence for an alternative tricarboxylic acid cycle. J Bacteriol 182:2838–2844 [CrossRef]
    [Google Scholar]
  14. Hayaishi O., Nishizuka Y., Tatibana M., Takeshita M., Kuno S. 1961; Enzymatic studies on the metabolism of β-alanine. J Biol Chem 236:781–790
    [Google Scholar]
  15. Jackson F. A., Dawes E. A. 1976; Regulation of the tricarboxylic acid cycle and poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii grown under nitrogen or oxygen limitation. J Gen Microbiol 97:303–312 [CrossRef]
    [Google Scholar]
  16. Kaminski P. A., Kitts C. L., Zimmerman Z., Ludwig R. A. 1996; Azorhizobium caulinodans uses both Cyt bd (quinol) and Cyt cbb 3 (Cyt c ) terminal oxidases for symbiotic N2 fixation. J Bacteriol 178:5989–5994
    [Google Scholar]
  17. Kitts C. L., Schaechter L. E., Rabin R. R., Ludwig R. A. 1989; Identification of cyclic intermediates in Azorhizobium caulinodans nicotinate catabolism. J Bacteriol 171:3406–3411
    [Google Scholar]
  18. Kitts C. L., Lapointe J. P., Lam V. T., Ludwig R. A. 1992; Elucidation of the complete Azorhizobium nicotinate catabolism pathway. J Bacteriol 174:7791–7797
    [Google Scholar]
  19. Koland J. G., Miller M. J., Gennis R. B. 1984; Reconstitution of the membrane-bound, ubiquinone-dependent pyruvate oxidase respiratory chain of Escherichia coli with the cytochrome d terminal oxidase. Biochemistry 23:445–453 [CrossRef]
    [Google Scholar]
  20. Kwon D. K., Beevers H. 1992; Growth of Sesbania rostrata (Brem) with stem nodules under controlled conditions. Plant Cell Environ 15:939–945 [CrossRef]
    [Google Scholar]
  21. Loroch A. I., Nguyen B., Ludwig R. A. 1995; FixLJK and NtrBC signals interactively regulate Azorhizobium nifA transcription via overlapping promoters. J Bacteriol 177:7210–7221
    [Google Scholar]
  22. Ludwig R. A. 1986; Rhizobium sp. strain ORS571 grows synergistically on N2 and nicotinate as N sources. J Bacteriol 165:304–307
    [Google Scholar]
  23. Mandon K., Michel-Reydellet N., Kaminski P. A., Cevallos M. A., Elmerich C., Mora J., Encarnación S. 1998; Poly -β-hydroxybutyrate turnover in Azorhizobium caulinodans is required for growth and affects nifA expression. J Bacteriol 180:5070–5076
    [Google Scholar]
  24. Pauling D. C. 1999; Identification and characterization of the pyruvate dehydrogenase locus in Azorhizobium caulinodans. PhD thesisUniversity of California, Santa Cruz
    [Google Scholar]
  25. Reid C. J., Walshaw D. L., Poole P. S. 1996; Aspartate transport by the Dct system in Rhizobium leguminosarum negatively affects nitrogen-regulated operons. Microbiology 142:2603–2612 [CrossRef]
    [Google Scholar]
  26. Ronson C. W., Lyttleton P., Robertson J. G. 1981; C4-dicarboxylate transport mutants of Rhizobium trifolii form ineffective nodules on Trifolium repens . Proc Natl Acad Sci USA 78:4284–4288 [CrossRef]
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Sanwal B. D. 1969; Control characteristics of malate dehydrogenase. J Biol Chem 244:1831–1837
    [Google Scholar]
  29. Sanwal B. D. 1970; Allosteric controls of amphibolic pathways in bacteria. Bacteriol Rev 34:20–39
    [Google Scholar]
  30. Senior P. J., Beech G. A., Ritchie F., Dawes E. A. 1972; The role of oxygen limitation in the formation of poly-β-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii . Biochem J 128:1193–1201
    [Google Scholar]
  31. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791 [CrossRef]
    [Google Scholar]
  32. Smith R. F., Smith T. 1991; Automatic generation of primary sequence patterns from sets of related protein sequences. Proc Natl Acad Sci USA 87:118–122
    [Google Scholar]
  33. Steinbüchel A., Schlegel H. G. 1991; Physiology and molecular genetics of poly- β-hydroxyalkanoic acid synthesis in Alcaligenes eutrophus . Mol Microbiol 5:535–542 [CrossRef]
    [Google Scholar]
  34. Thöny-Meyer L., Künzler P. 1996; The Bradyrhizobium japonicum aconitase gene is important for free-living growth but not for an effective root nodule symbiosis. J Bacteriol 178:6166–6172
    [Google Scholar]
  35. Vélot C., Srere P. A. 2000; Reversible transdominant inhibition of a metabolic pathway. J Biol Chem 275:12926–12933 [CrossRef]
    [Google Scholar]
  36. Wong P. P., Evans H. J. 1971; Poly-β-hydroxybutyrate utilization by soybean ( Glycine max Merr.) nodules and assessment of its role in maintenance of nitrogenase activity. Plant Physiol 47:750–755 [CrossRef]
    [Google Scholar]
  37. Yamada E. W., Jakoby W. B. 1960; Direct conversion of malonic semialdehyde to acetyl-coenzyme A. J Biol Chem 235:589–594
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-8-2233
Loading
/content/journal/micro/10.1099/00221287-147-8-2233
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error