1887

Abstract

mutant 62004 carries a null allele of , encoding the E1β subunit of pyruvate dehydrogenase, which converts pyruvate to acetyl-CoA. This mutant completely lacks pyruvate oxidation activities yet grows aerobically on C dicarboxylates (succinate, L-malate) as sole energy source, albeit slowly, and displays pleiotropic growth defects consistent with physiological acetyl-CoA limitation. Temperature-sensitive (ts), conditional-lethal derivatives of the mutant lack (methyl)malonate semialdehyde dehydrogenase activity, which thus also allows L-malate conversion to acetyl-CoA. The mutant remains able to fix N in aerobic culture, but is unable to fix N in symbiosis with host plants and cannot grow microaerobically. In culture, wild-type can use acetate, β-D-hydroxybutyrate and nicotinate – all direct precursors of acetyl-CoA – as sole C and energy source for aerobic, but not microaerobic growth. Paradoxically, acetyl-CoA is thus a required intermediate for microaerobic oxidative energy transduction while not itself oxidized. Accordingly, energy transduction under aerobic and microaerobic conditions is qualitatively different.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-2233
2001-08-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1472233a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-2233&mimeType=html&fmt=ahah

References

  1. Bergersen, F. J. & Turner, G. L. ( 1990; ). Bacteroids from soybean root nodules: accumulation of poly-β-hydroxybutyrate during supply of malate and succinate in relation to N2 fixation in flow-chamber reactions. Proc R Soc Lond B 240, 39-59.[CrossRef]
    [Google Scholar]
  2. Bergersen, F., Turner, G. L., Bogusz, D., Wu, Y.-Q. & Appleby, C. A. ( 1986; ). Effects of O2 concentrations on respiration and nitrogenase activity of bacteroids from stem and root nodules of Sesbania rostrata and of the same bacteria from continuous culture. J Gen Microbiol 132, 3325-3336.
    [Google Scholar]
  3. Bernovsky, C. & Swan, M. ( 1973; ). An improved cycling assay for nicotinamide adenine dinucleotide. Anal Biochem 53, 452-458.[CrossRef]
    [Google Scholar]
  4. Buckmiller, L. M., Lapointe, J. P. & Ludwig, R. A. ( 1991; ). Physical mapping of the Azorhizobium caulinodans nicotinate catabolism genes and characterization of their importance to N2 fixation. J Bacteriol 173, 2017-2025.
    [Google Scholar]
  5. Cabanes, D., Boistard, P. & Batut, J. ( 2000; ). Symbiotic induction of pyruvate dehydrogenase genes from Sinorhizobium meliloti. Mol Plant–Microbe Interact 13, 483-493.[CrossRef]
    [Google Scholar]
  6. Ditta, G. ( 1986; ). Tn5 mapping of Rhizobium nitrogen fixation genes. Methods Enzymol 118, 519-528.
    [Google Scholar]
  7. Donald, R. G. K., Raymond, C. K. & Ludwig, R. A. ( 1985; ). Vector insertion mutagenesis of Rhizobium sp. strain ORS571: direct cloning of mutagenised DNA sequences. J Bacteriol 162, 317-323.
    [Google Scholar]
  8. Donald, R. G. K., Nees, D., Raymond, C. K., Loroch, A. I. & Ludwig, R. A. ( 1986; ). Three genomic loci encode Rhizobium sp. ORS571 N2 fixation genes. J Bacteriol 165, 72-81.
    [Google Scholar]
  9. Dreyfus, B. L. & Dommergues, Y. R. ( 1981; ). Nitrogen fixing nodules induced by Rhizobium on stems of the tropical legume Sesbania rostrata. FEMS Microbiol Lett 10, 313-317.[CrossRef]
    [Google Scholar]
  10. Driscoll, B. T. & Finan, T. M. ( 1993; ). NAD-dependent malic enzyme of Rhizobium meliloti is required for symbiotic nitrogen fixation. Mol Microbiol 7, 865-873.[CrossRef]
    [Google Scholar]
  11. Finan, T. M., Wood, J. M. & Jordan, D. C. ( 1981; ). Succinate transport in Rhizobium leguminosarum. J Bacteriol 148, 193-202.
    [Google Scholar]
  12. Finan, T. M., Wood, J. M. & Jordan, D. C. ( 1983; ). Symbiotic properties of C4-dicarboxylic acid transport mutants of Rhizobium leguminosarum. J Bacteriol 154, 1403-1413.
    [Google Scholar]
  13. Green, L. S., Li, Y., Emerich, D. W., Bergersen, F. J. & Day, D. A. ( 2000; ). Catabolism of α-ketoglutarate by a sucA mutant of Bradyrhizobium japonicum: evidence for an alternative tricarboxylic acid cycle. J Bacteriol 182, 2838-2844.[CrossRef]
    [Google Scholar]
  14. Hayaishi, O., Nishizuka, Y., Tatibana, M., Takeshita, M. & Kuno, S. ( 1961; ). Enzymatic studies on the metabolism of β-alanine. J Biol Chem 236, 781-790.
    [Google Scholar]
  15. Jackson, F. A. & Dawes, E. A. ( 1976; ). Regulation of the tricarboxylic acid cycle and poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii grown under nitrogen or oxygen limitation. J Gen Microbiol 97, 303-312.[CrossRef]
    [Google Scholar]
  16. Kaminski, P. A, Kitts, C. L., Zimmerman, Z. & Ludwig, R. A. ( 1996; ). Azorhizobium caulinodans uses both Cytbd (quinol) and Cytcbb 3 (Cytc) terminal oxidases for symbiotic N2 fixation. J Bacteriol 178, 5989-5994.
    [Google Scholar]
  17. Kitts, C. L., Schaechter, L. E., Rabin, R. R. & Ludwig, R. A. ( 1989; ). Identification of cyclic intermediates in Azorhizobium caulinodans nicotinate catabolism. J Bacteriol 171, 3406-3411.
    [Google Scholar]
  18. Kitts, C. L., Lapointe, J. P., Lam, V. T. & Ludwig, R. A. ( 1992; ). Elucidation of the complete Azorhizobium nicotinate catabolism pathway. J Bacteriol 174, 7791-7797.
    [Google Scholar]
  19. Koland, J. G., Miller, M. J. & Gennis, R. B. ( 1984; ). Reconstitution of the membrane-bound, ubiquinone-dependent pyruvate oxidase respiratory chain of Escherichia coli with the cytochrome d terminal oxidase. Biochemistry 23, 445-453.[CrossRef]
    [Google Scholar]
  20. Kwon, D. K. & Beevers, H. ( 1992; ). Growth of Sesbania rostrata (Brem) with stem nodules under controlled conditions. Plant Cell Environ 15, 939-945.[CrossRef]
    [Google Scholar]
  21. Loroch, A. I., Nguyen, B. & Ludwig, R. A. ( 1995; ). FixLJK and NtrBC signals interactively regulate Azorhizobium nifA transcription via overlapping promoters. J Bacteriol 177, 7210-7221.
    [Google Scholar]
  22. Ludwig, R. A. ( 1986; ). Rhizobium sp. strain ORS571 grows synergistically on N2 and nicotinate as N sources. J Bacteriol 165, 304-307.
    [Google Scholar]
  23. Mandon, K., Michel-Reydellet, N., Encarnación, S., Kaminski, P. A., Cevallos, M. A., Elmerich, C. & Mora, J. ( 1998; ). Poly-β-hydroxybutyrate turnover in Azorhizobium caulinodans is required for growth and affects nifA expression. J Bacteriol 180, 5070-5076.
    [Google Scholar]
  24. Pauling, D. C. (1999). Identification and characterization of the pyruvate dehydrogenase locus in Azorhizobium caulinodans. PhD thesis, University of California, Santa Cruz.
  25. Reid, C. J., Walshaw, D. L. & Poole, P. S. ( 1996; ). Aspartate transport by the Dct system in Rhizobium leguminosarum negatively affects nitrogen-regulated operons. Microbiology 142, 2603-2612.[CrossRef]
    [Google Scholar]
  26. Ronson, C. W., Lyttleton, P. & Robertson, J. G. ( 1981; ). C4-dicarboxylate transport mutants of Rhizobium trifolii form ineffective nodules on Trifolium repens. Proc Natl Acad Sci USA 78, 4284-4288.[CrossRef]
    [Google Scholar]
  27. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  28. Sanwal, B. D. ( 1969; ). Control characteristics of malate dehydrogenase. J Biol Chem 244, 1831-1837.
    [Google Scholar]
  29. Sanwal, B. D. ( 1970; ). Allosteric controls of amphibolic pathways in bacteria. Bacteriol Rev 34, 20-39.
    [Google Scholar]
  30. Senior, P. J., Beech, G. A., Ritchie, F. & Dawes, E. A. ( 1972; ). The role of oxygen limitation in the formation of poly-β-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii. Biochem J 128, 1193-1201.
    [Google Scholar]
  31. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1, 784-791.[CrossRef]
    [Google Scholar]
  32. Smith, R. F. & Smith, T. ( 1991; ). Automatic generation of primary sequence patterns from sets of related protein sequences. Proc Natl Acad Sci USA 87, 118-122.
    [Google Scholar]
  33. Steinbüchel, A. & Schlegel, H. G. ( 1991; ). Physiology and molecular genetics of poly-β-hydroxyalkanoic acid synthesis in Alcaligenes eutrophus. Mol Microbiol 5, 535-542.[CrossRef]
    [Google Scholar]
  34. Thöny-Meyer, L. & Künzler, P. ( 1996; ). The Bradyrhizobium japonicum aconitase gene is important for free-living growth but not for an effective root nodule symbiosis. J Bacteriol 178, 6166-6172.
    [Google Scholar]
  35. Vélot, C. & Srere, P. A. ( 2000; ). Reversible transdominant inhibition of a metabolic pathway. J Biol Chem 275, 12926-12933.[CrossRef]
    [Google Scholar]
  36. Wong, P. P. & Evans, H. J. ( 1971; ). Poly-β-hydroxybutyrate utilization by soybean (Glycine max Merr.) nodules and assessment of its role in maintenance of nitrogenase activity. Plant Physiol 47, 750-755.[CrossRef]
    [Google Scholar]
  37. Yamada, E. W. & Jakoby, W. B. ( 1960; ). Direct conversion of malonic semialdehyde to acetyl-coenzyme A. J Biol Chem 235, 589-594.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-8-2233
Loading
/content/journal/micro/10.1099/00221287-147-8-2233
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error