1887

Abstract

From HF39 null-allele mutants were created by Tn mutagenesis and by homologous recombination which were impaired in growth on propionic acid and levulinic acid. From the molecular, physiological and enzymic analysis of these mutants it was concluded that in this bacterium propionic acid is metabolized via the methylcitric acid pathway. The genes encoding enzymes of this pathway are organized in a cluster in the order , , , , ORF5 and , with transcribed divergently from the other genes. (i) encodes a 2-methylcitric acid synthase (42720 Da) as shown by the measurement of the respective enzyme activity, complementation of a mutant of serovar Typhimurium and high sequence similarity. (ii) For the translational product of the function of a 2-methyl--aconitic acid hydratase (94726 Da) is proposed. This protein and also the ORF5 translational product are essential for growth on propionic acid, as revealed by the propionic-acid-negative phenotype of Tn-insertion mutants, and are required for the conversion of 2-methylcitric acid into 2-methylisocitric acid as shown by the accumulation of the latter, which could be purified as its calcium salt from the supernatants of these mutants. In contrast, inactivation of did not block the ability of the cell to use propionic acid as carbon and energy source, as shown by the propionic acid phenotype of a null-allele mutant. It is therefore unlikely that from encodes a 2-methyl--aconitic acid dehydratase as proposed recently for the homologous gene from . (iii) The translational product of encodes 2-methylisocitric acid lyase (32314 Da) as revealed by measurement of the respective enzyme activity and by demonstrating accumulation of methylisocitric acid in the supernatant of a null-allele mutant. (iv) The expression of and probably also of the other enzymes is regulated and is induced during cultivation on propionic acid or levulinic acid. The putative translational product of (70895 Da) exhibited high similarities to PrpR of and , and might represent a transcriptional activator of the sigma-54 family involved in the regulation of the other genes. Since the locus of was very different from those of and , an extensive comparison of loci available from databases and literature was done, revealing two different classes of loci.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-2203
2001-08-01
2020-12-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1472203a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-2203&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Zhang J., Zhang Z., Miller W., Lipman D. J., Schäffer A. A.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  2. Alvarez-Morales A., Betancourt-Alvarez M., Kaluza K., Henneke H.. 1986; Activation of the Bradyrhizobium japonicum nifH and nifDK operons is dependent on promotor-upstream DNA sequences. Nucleic Acids Res14:4207–4227[CrossRef]
    [Google Scholar]
  3. Aoki H., Uchiyama H., Umetsu H., Tabuchi T.. 1995; Isolation of 2-methylisocitrate dehydratase, a new enzyme serving in the methylcitric acid cycle for propionate metabolism, from Yallowia lipolytica. Biosci Biotechnol Biochem59:1825–1828[CrossRef]
    [Google Scholar]
  4. Bairoch A., Bucher P., Hoffmann K.. 1997; The PROSITE database, its status in 1997. Nucleic Acids Res25:217–221[CrossRef]
    [Google Scholar]
  5. Birnboim H. C., Doly J.. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res7:1513–1523[CrossRef]
    [Google Scholar]
  6. Blattner F. R., Plunkett G. I. I. I., Bloch C. A.. 14 other authors 1997; The complete genome sequence of Escherichia coli K-12. Science277:1453–1474[CrossRef]
    [Google Scholar]
  7. Bobik T. A., Xu Y., Jeter R. M., Otto K. E., Roth J. R.. 1997; Propanediol utilization genes ( pdu ) of Salmonella typhimurium : three genes for the propanediol dehydratase. J Bacteriol179:6633–6639
    [Google Scholar]
  8. Bolivar F.. 1978; Construction and characterization of new cloning vehicles. III. Derivatives of plasmid pBR322 carrying unique Eco RI sites for selection of Eco RI generated recombinant DNA molecules. Gene4:121–136[CrossRef]
    [Google Scholar]
  9. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254[CrossRef]
    [Google Scholar]
  10. Brock M., Fischer R., Linder D., Buckel W.. 2000; Methylcitrate synthase from Aspergillus nidulans : implications for propionate as an antifungal agent. Mol Microbiol35:961–973[CrossRef]
    [Google Scholar]
  11. Brock M., Darley D., Textor S., Buckel W.. 2001; 2-Methylisocitrate lyases from the bacterium Escherichia coli and the filamentous fungus Aspergillus nidulans : characterization and comparison of both enzymes. Eur J Biochem (in press
    [Google Scholar]
  12. Bullock W. O., Fernandez J. M., Stuart J. M.. 1987; XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. BioTechniques5:376–379
    [Google Scholar]
  13. Friedrich B., Hogrefe C., Schlegel H. G.. 1981; Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus . J Bacteriol147:198–205
    [Google Scholar]
  14. Gorenflo V., Schmack G., Steinbüchel A.. 1998; Biotechnological production and characterization of polyesters containing 4-hydroxyvaleric acid and medium-chain-length hydroxyalkanoic acids. Macromolecules31:644–649[CrossRef]
    [Google Scholar]
  15. Grunstein M., Hogness D. S.. 1975; Colony hybridization: a method for the isolation of cloned DNA that contains a specific gene. Proc Natl Acad Sci USA72:3961–3965[CrossRef]
    [Google Scholar]
  16. Hanahan D.. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580[CrossRef]
    [Google Scholar]
  17. Hogrefe C., Friedrich B., Römermann D.. 1984; Alcaligenes eutrophus hydrogenase genes ( hox . J Bacteriol158:43–48
    [Google Scholar]
  18. Hohn B., Collins J.. 1980; A small cosmid for efficient cloning of large DNA fragments. Gene11:291–298[CrossRef]
    [Google Scholar]
  19. Hohn B., Murray K.. 1977; Packaging recombinant DNA molecules into bacteriophage particles in vitro . Proc Natl Acad Sci USA74:3259–3263[CrossRef]
    [Google Scholar]
  20. Horswill A. R., Escalante-Semerena J. C.. 1997; Propionate catabolism in Salmonella typhimurium LT2: two divergently transcripted units comprise the prp locus at 8·5 centisomes, prpR encodes a member of the sigma-54 family of activators, and the prpBCDE genes constitute an operon. J Bacteriol179:928–940
    [Google Scholar]
  21. Horswill A. R., Escalante-Semerena J. C.. 1999a; The prpE gene of Salmonella typhimurium LT2 encodes propionyl-CoA synthetase. Microbiology145:1381–1388[CrossRef]
    [Google Scholar]
  22. Horswill A. R., Escalante-Semerena J. C.. 1999b; Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle. J Bacteriol181:5615–5623
    [Google Scholar]
  23. Kennedy M. C., Emptage M. H., Dreyer J.-L., Beimert H.. 1983; The role of iron in the activation-inactivation of aconitase. J Biol Chem258:11098–11105
    [Google Scholar]
  24. Klein P., Kanehisa M., DeLisi C.. 1985; The detection and classification of membrane-spanning proteins. Biochim Biophys Acta815:468–476[CrossRef]
    [Google Scholar]
  25. Kustu S., Santero E., Keener J., Opham D., Weiss D.. 1989; Expression of σ54( ntrA )-dependent genes is probably united by a common mechanism. Microbiol Rev53:367–376
    [Google Scholar]
  26. Luttik M. A. H., Salomons F. A., Pronk J. T., Kötter P., van der Klei I. J., van Dijken J. P.. 2000; The Saccharomyces cerevisiae ICL 2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-CoA metabolism. J Bacteriol182:7007–7013[CrossRef]
    [Google Scholar]
  27. Marmur J.. 1961; A procedure for the isolation of desoxyribonucleic acids from microorganisms. J Mol Biol3:208–218[CrossRef]
    [Google Scholar]
  28. Mengaud J. M., Horwitz M. A.. 1993; The major iron-containing protein of Legionella pneumophila is an aconitase homologous with the human iron-responsive element-binding protein. J Bacteriol175:5666–5676
    [Google Scholar]
  29. Miyakoshi S., Uchiyama H., Someya T., Satoh T., Tabuchi T.. 1987; Distribution of the methylcitric acid cycle and β-oxidation for propionate in fungi. Agric Biol Chem51:2381–2387[CrossRef]
    [Google Scholar]
  30. Oelmüller U., Krüger N., Steinbüchel A., Friedrich C. G.. 1990; Isolation of prokaryotic RNA and detection of specific mRNA with biotinylated probes. J Microbiol Methods11:73–84[CrossRef]
    [Google Scholar]
  31. Osborn M., Weber K.. 1969; The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem244:4406–4412
    [Google Scholar]
  32. Overhage J., Priefert H., Rabenhorst J., Steinbüchel A.. 1999; Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase ( vdh ) gene. Appl Microbiol Biotechnol52:820–828[CrossRef]
    [Google Scholar]
  33. Palacios S., Escalante-Semerena J. C.. 2000; prpR , ntr A and ihf functions are required for expression of the prpBCDE operon, encoding enzymes that catabolize propionate in Salmonella enterica serovar Typhimurium LT2. J Bacteriol182:905–910[CrossRef]
    [Google Scholar]
  34. Parro V., San Román H., Galindo I., Purnelle B., Bolotin A., Sorokin A., Mellado R. P.. 1997; A 23911 bp region of the Bacillus subtilis genome comprising genes located upstream and downstream of the lev operon. Microbiology143:1321–1326[CrossRef]
    [Google Scholar]
  35. Priefert H., Steinbüchel A.. 1992; Identification and molecular characterization of the acetyl coenzyme A synthetase gene ( acoE ) of Alcaligenes eutrophus . J Bacteriol174:6590–6599
    [Google Scholar]
  36. Prodromou C., Artymuik P. J., Guest J. R.. 1992; The aconitase of Escherichia coli . Nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial aconitases, the iron-responsive-element-binding protein and isopropylmalate isomerases. Eur J Biochem204:599–609[CrossRef]
    [Google Scholar]
  37. Pronk J. T., Verduyn C., Scheffers W. A., van der Linden-Beuman A., van Dijken J. P.. 1994; Propionate metabolism in Saccharomyces cerevisiae : implications for the metabolon hypothesis. Microbiology140:717–722[CrossRef]
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Scalenghe F., Turco E., Pirotta V., Melli M., Edström J. E.. 1981; Microdissection and cloning of DNA from specific region of Drosophila melanogaster polytene chromosomes. Chromosoma82:205–216[CrossRef]
    [Google Scholar]
  40. Schlegel H. G., Kaltwasser H., Gottschalk G.. 1961; Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol38:209–222[CrossRef]
    [Google Scholar]
  41. Simon R.. 1984; High frequency mobilization of Gram-negative bacterial replicons by the in vitro Tn 5 - mob transposon. Mol Gen Genet196:413–420[CrossRef]
    [Google Scholar]
  42. Simon R., Priefer U., Pühler A.. 1983a; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology1:784–791[CrossRef]
    [Google Scholar]
  43. Simon R., Priefer U., Pühler A.. 1983b; Vector plasmids for in vivo and in vitro manipulations of gram-negative bacteria. In Molecular Genetics of the Bacteria–Plant Interaction pp98–106 Edited by Pühler A.. Berlin/Heidelberg/New York: Springer;
    [Google Scholar]
  44. Srere P. A.. 1966; Citrate-condensing enzyme–oxaloacetate binary complex. J Biol Chem241:2157–2165
    [Google Scholar]
  45. Srivastava S., Urban M., Friedrich B.. 1982; Mutagenesis of Alcaligenes eutrophus by insertion of the drug-resistance transposon Tn 5 . Arch Microbiol131:203–207[CrossRef]
    [Google Scholar]
  46. Strauss E. C., Kobori J. A., Siu G., Hood L. E.. 1986; Specific-primer-directed DNA sequencing. Anal Biochem154:353–360[CrossRef]
    [Google Scholar]
  47. Tabuchi T., Serizawa N.. 1975; The production of 2-methylcitric acid from odd-carbon n -alkanes by a mutant of Candida lipolytica . Agric Biol Chem39:1049–1054[CrossRef]
    [Google Scholar]
  48. Taghavi S., Mergeay M., van der Lelie D.. 1994; Electoporation of Alcaligenes eutrophus with (mega) plasmids and genomic DNA fragments. Appl Environ Microbiol60:3585–3591
    [Google Scholar]
  49. Textor S., Wendisch V. F., De Graaf A. A., Linder M. I., Linder D., Buckel W., Müller U.. 1997; Propionate oxidation in Escherichia coli : evidence for operation of a methylcitrate cycle in bacteria. Arch Microbiol168:428–436[CrossRef]
    [Google Scholar]
  50. Vagelos P. R.. 1959; Propionic acid metabolism. IV. Synthesis of malonyl coenzyme A. J Biol Chem234:490–497
    [Google Scholar]
  51. Valentin H. E., Schönebaum A., Steinbüchel A.. 1992; Identification of 4-hydroxyvaleric acid as a constituent of biosynthetic polyhydroxyalkanoic acids from bacteria. Appl Microbiol Biotechnol36:507–514
    [Google Scholar]
  52. Yu Y., Radisky E. S., Leibold E. A.. 1992; The iron-responsive element binding protein: purification, cloning and regulation in rat liver. J Biol Chem267:19005–19010
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-8-2203
Loading
/content/journal/micro/10.1099/00221287-147-8-2203
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error