Unusual location of two nearby pairs of upstream activating sequences for HbpR, the main regulatory protein for the 2-hydroxybiphenyl degradation pathway of ‘’ HBP1 Free

Abstract

’ HBP1 degrades 2-hydroxybiphenyl (2-HBP) and 2,2′-diHBP by employing a -cleavage pathway encoded by the genes. The regulatory gene , located directly upstream of the genes and oriented in the opposite direction, encodes a transcription activator protein belonging to the so-called XylR/DmpR subclass within the NtrC family. HbpR activates transcription from two separate σ-dependent promoters upstream of the and the genes, in the presence of the pathway substrates 2-HBP and 2,2′-diHBP. The DNA region upstream of the gene displays an unusual organization, containing two adjacent 03 kb regions that share 71% sequence identity. The DNA region most proximal to the promoter harbours one pair of putative upstream activating sequences (UASs C-1/C-2) and a small cryptic ORF that shows homology to itself. The second, more distal, region contains a second pair of putative UASs (UASs C-3/4) and the 5′-part of the gene. Transcriptional fusions in between different deletions of the intergenic region and the genes for bacterial luciferase revealed that most if not all of the transcriptional output from the promoter is mediated from the proximal UASs C-1/C-2. However, when the UASs C-1/C-2 were deleted and UASs C-3/C-4 were placed in an appropriate position with respect to the promoter region, the promoter was still inducible with 2-HBP, albeit at a lower level. Transcription studies in and ‘’ revealed that the divergently oriented gene is expressed constitutively from a σ-dependent promoter situated within the cryptic ORF. The presence of UAS pair C-3/C-4 mediated a slightly higher promoter activity for transcription of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-2183
2001-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1472183a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-2183&mimeType=html&fmt=ahah

References

  1. Abril M. A., Ramos J. L. 1993; Physical organization of the upper pathway operon promoter of the Pseudomonas TOL plasmid. Sequence and positional requirements for XylR-dependent activation of transcription. Mol Gen Genet 239:281–288
    [Google Scholar]
  2. Abril M.-A., Buck M., Ramos J. L. 1991; Activation of the Pseudomonas TOL plasmid upper pathway operon. J Biol Chem 266:15832–15838
    [Google Scholar]
  3. Arenghi F. L., Pinti M., Galli E., Barbieri P. 1999; Identification of the Pseudomonas stutzeri OX1 toluene- o -xylene monooxygenase regulatory gene ( touR ) and of its cognate promoter. Appl Environ Microbiol 65:4057–4063
    [Google Scholar]
  4. Bertoni G., Pérez-Martı́n J., de Lorenzo V. 1997; Genetic evidence of separate repressor and activator activities of the XylR regulator of the TOL plasmid, pWW0, of Pseudomonas putida . Mol Microbiol 23:1221–1227 [CrossRef]
    [Google Scholar]
  5. Bertoni G., Fujita N., Ishihama A., de Lorenzo V. 1998a; Active recruitment of σ54-RNA polymerase to the Pu promoter of Pseudomonas putida : role of IHF and αCTD. EMBO J 17:5120–5128 [CrossRef]
    [Google Scholar]
  6. Bertoni G., Marqués S., de Lorenzo V. 1998b; Activation of the toluene-responsive regulator XylR causes a transcriptional switch between σ54 and σ70 promoters at the divergent Pr / Ps region of the TOL plasmid. Mol Microbiol 27:651–659 [CrossRef]
    [Google Scholar]
  7. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol 41:459–472 [CrossRef]
    [Google Scholar]
  8. Burchhardt G., Schmidt I., Cuypers H., Petruschka L., Herrmann H., Völker A. 1997; Studies on spontanous promoter-up mutations in the transcriptional activator-encoding gene phlR and their effects on the degradation of phenol in Escherichia coli and Pseudomonas putida . Mol Gen Genet 254:539–547 [CrossRef]
    [Google Scholar]
  9. Carmona M., Bertoni G., de Lorenzo V. 1999; Recruitment of RNA polymerase is a rate-limiting step for the activation of the σ54 promoter Pu of Pseudomonas putida . J Biol Chem 274:33790–33794 [CrossRef]
    [Google Scholar]
  10. Chang A. C. Y., Cohen S. N. 1978; Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141–1156
    [Google Scholar]
  11. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci USA 76:1648–1652 [CrossRef]
    [Google Scholar]
  12. Folkert F. 1996; Reporter proteins as tools in environmental monitoring. PhD thesisRijksuniversiteit Groningen, The Netherlands
    [Google Scholar]
  13. Friedman D. I. 1988; Integration host factor: a protein for all reasons. Cell 55:545–554 [CrossRef]
    [Google Scholar]
  14. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Gomada M., Inouye S., Imaishi H., Nakazawa A., Nakazawa T. 1992; Analysis of an upstream regulatory sequence required for activation of the regulatory gene xylS in xylene metabolism directed by the TOL plasmid of Pseudomonas putida . Mol Gen Genet 233:419–426
    [Google Scholar]
  16. Harley C. B., Reynolds R. P. 1987; Analysis of E. coli promoter sequences. Nucleic Acids Res 15:2343–2361 [CrossRef]
    [Google Scholar]
  17. Herrero M., Timmis K. N., de Lorenzo V. 1990; Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J Bacteriol 172:6557–6567
    [Google Scholar]
  18. Inouye S., Ebina Y., Nakazawa A., Nakazawa T. 1984; Nucleotide sequence surrounding transcription initiation site of xylABC operon on TOL plasmid of Pseudomonas putida . Proc Natl Acad Sci USA 81:1688–1691 [CrossRef]
    [Google Scholar]
  19. Inouye S., Nakazawa A., Nakazawa T. 1986; Nucleotide sequence of the regulatory gene xylS on the Pseudomonas putida TOL plasmid and identification of the protein product. Gene 44:235–242 [CrossRef]
    [Google Scholar]
  20. Inouye S., Nakazawa A., Nakazawa T. 1987; Expression of the regulatory gene xylS on the TOL plasmid is positively controlled by the xylR gene product. Proc Natl Acad Sci USA 84:5182–5186 [CrossRef]
    [Google Scholar]
  21. Inouye S., Nakazawa A., Nakazawa T. 1988; Nucleotide sequence of the regulatory gene xylR of the TOL plasmid from Pseudomonas putida . Gene 66:301–306 [CrossRef]
    [Google Scholar]
  22. Inouye S., Gomada M., Sangodkar U. M. X., Nakazawa A., Nakazawa T. 1990; Upstream regulatory sequence for transcriptional activator XylR in the first operon of xylene metabolism on the TOL plasmid. J Mol Biol 216:251–260 [CrossRef]
    [Google Scholar]
  23. Jaspers M. C. M., Suske W. A., Schmid A., Goslings D. A. M., Kohler H.-P. E., van der Meer J. R. 2000; HbpR, a new member of the XylR/DmpR subclass within the NtrC family of bacterial transcriptional activators, regulates expression of 2-hydroxybiphenyl metabolism in Pseudomonas azelaica HBP1. J Bacteriol 182:405–417 [CrossRef]
    [Google Scholar]
  24. Jaspers M. C. M., Schmid A., Sturme M. H. J., Goslings D. A. M., Kohler H.-P. E., van der Meer J. R. 2001; Transcription organization and dynamic expression of the hbpCAD genes, which encode the first three enzymes for 2-hydroxybiphenyl degradation in Pseudomonas azelaica . J Bacteriol 183:270–279 [CrossRef]
    [Google Scholar]
  25. Kohler H.-P. E., Kohler-Staub D., Focht D. D. 1988; Degradation of 2-hydroxybiphenyl and 2,2′-dihydroxybiphenyl by Pseudomonas sp. strain HBP1. Appl Environ Microbiol 54:2683–2688
    [Google Scholar]
  26. Kohler H.-P. E., Schmid A., van der Maarel M. 1993; Metabolism of 2,2′-dihydroxybiphenyl by Pseudomonas sp. strain HBP1: production and consumption of 2,2′,3-trihydroxybiphenyl. J Bacteriol 175:1621–1628
    [Google Scholar]
  27. Kristensen C. S., Eberl L., Sanchez-Romero J. M., Givskov M., Molin S., de Lorenzo V. 1995; Site-specific deletions of chromosomally located DNA segments with the multimer resolution system of broad-host-range plasmid RP4. J Bacteriol 177:52–58
    [Google Scholar]
  28. Kustu S., North A. K., Weiss D. S. 1991; Prokaryotic transcriptional enhancers and enhancer-binding proteins. Trends Biochem Sci 16:397–402 [CrossRef]
    [Google Scholar]
  29. Marqués S., Gallegos M.-T., Manzanera M., Holtel A., Timmis K. N., Ramos J. L. 1998; Activation and repression of transcription at the double tandem divergent promoters for the xylR and xylS genes of the TOL plasmid of Pseudomonas putida . J Bacteriol 180:2889–2894
    [Google Scholar]
  30. Morett E., Segovia L. 1993; The σ54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J Bacteriol 175:6067–6074
    [Google Scholar]
  31. Nordlund I., Powlowski J., Shingler V. 1990; Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J Bacteriol 172:6826–6833
    [Google Scholar]
  32. Oelze J., Kamen M. D. 1975; Separation of respiratory reactions in Rhodospirillum rubrum : inhibition studies with 2-hydroxybiphenyl. Biochim Biophys Acta 387:1–11 [CrossRef]
    [Google Scholar]
  33. Pérez-Martı́n J., de Lorenzo V. 1996a; ATP binding to the σ54-dependent activator XylR triggers a protein multimerization cycle catalyzed by UAS DNA. Cell 86:331–339 [CrossRef]
    [Google Scholar]
  34. Pérez-Martı́n J., de Lorenzo V. 1996b; Physical and functional analysis of the prokaryotic enhancer of the σ54-promoters of the TOL plasmid of Pseudomonas putida . J Mol Biol 258:562–574 [CrossRef]
    [Google Scholar]
  35. Pérez-Martı́n J., Rojo F., de Lorenzo V. 1994; Promoters responsive to DNA bending: a common theme in prokaryotic gene expression. Microbiol Rev 58:268–290
    [Google Scholar]
  36. Porter S. C., North A. K., Wedel A. B., Kustu S. 1993; Oligomerization of NtrC at the glnA enhancer is required for transcriptional activation. Genes Dev 7:2258–2273 [CrossRef]
    [Google Scholar]
  37. Ravatn R., Studer S., Zehnder A. J. B., van der Meer J. R. 1998; Int-B13, an unusual site-specific recombinase of the bacteriophage P4 integrase family, is responsible for chromosomal insertion of the 105-kilobase clc element of Pseudomonas sp. strain B13. J Bacteriol 180:5505–5514
    [Google Scholar]
  38. Ross W., Gosink K. K., Salomon J., Igarashi K., Zou C., Ishihama A., Severinov K., Gourse R. L. 1993; A third recognition element in bacterial promoters: DNA binding by the α subunit of RNA polymerase. Science 262:1407–1413 [CrossRef]
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467 [CrossRef]
    [Google Scholar]
  41. Schmid A. 1997; Der Metabolismus von 2-Hydroxybiphenyl-Verbindungen in Pseudomonas azelaica HBP1. PhD thesisUniversität Stuttgart, Germany
    [Google Scholar]
  42. Shingler V. 1996; Signal sensing by σ54-dependent regulators: derepression as a control mechanism. Mol Microbiol 19:409–416 [CrossRef]
    [Google Scholar]
  43. Shingler V., Bartilson M., Moore T. 1993; Cloning and nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators. J Bacteriol 175:1596–1604
    [Google Scholar]
  44. Sticher P., Jaspers M. C. M., Stemmler K., Harms H., Zehnder A. J. B., van der Meer J. R. 1997; Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl Environ Microbiol 63:4053–4060
    [Google Scholar]
  45. Wedel A., Weiss D. S., Popham D., Kustu S., Dröge P. 1990; A bacterial enhancer functions to tether a transcriptional activator near a promoter. Science 248:486–490 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-8-2183
Loading
/content/journal/micro/10.1099/00221287-147-8-2183
Loading

Data & Media loading...

Most cited Most Cited RSS feed