1887

Abstract

Although gene clusters for the degradation of biphenyls and polychlorobiphenyls have been extensively characterized, comparatively little is known about the regulation of their expression. In the present work, different aspects of transcription of the locus of the potent polychlorobiphenyl degrader sp. strain LB400 were investigated. An RNA blot analysis of the entire gene cluster revealed that the transcription of all genes encoding biphenyl catabolic enzymes responded similarly to the presence of biphenyl, succinate or a mixture of the two. One region of the locus, encompassing ORF0, was separately transcribed and differently regulated. A single start position was mapped for this monocistronic transcript. Synthesis of the adjacent RNA, encoding subunits of biphenyl dioxygenase, was strongly biphenyl-inducible. In this case, four major 5′-ends were mapped between 25 and 70 bp upstream of the start codon of gene . Sequence elements between approximately positions 710 and 1080 upstream were required for full functioning of the respective promoter(s) (P). ORF0 mutants of strain LB400 retained the ability to grow on biphenyl, but showed decreased concentrations of RNA and decreased expression in strains harbouring a reporter system with a transcriptional fusion. This effect was compensated by the introduction of an intact ORF0 , indicating that the ORF0 gene product mediates activation of P.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-2169
2001-08-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1472169a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-2169&mimeType=html&fmt=ahah

References

  1. Abril M. A., Buck M., Ramos J. L. 1991; Activation of the Pseudomonas TOL plasmid upper pathway operon. Identification of binding sites for the positive regulator XylR and for integration host factor protein. J Biol Chem 266:15832–15838
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Arai H., Akahira S., Ohishi T., Kudo T. 1999; Adaptation of Comamonas testosteroni TA441 to utilization of phenol by spontaneous mutation of the gene for a trans -acting factor. Mol Microbiol 33:1132–1140
    [Google Scholar]
  4. Bauchop T., Elsden S. R. 1969; The growth of microorganisms in relation to their energy supply. J Gen Microbiol 23:457–469
    [Google Scholar]
  5. Bedard D. L., Haberl M. L. 1990; Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyls by eight bacterial strains. Microb Ecol 20:87–102 [CrossRef]
    [Google Scholar]
  6. Bopp L. H. 1986; Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J Ind Microbiol 1:23–29 [CrossRef]
    [Google Scholar]
  7. Bopp L. H., Chakrabarty A. M., Ehrlich H. L. 1983; Chromate resistance plasmid in Pseudomonas fluorescens . J Bacteriol 155:1105–1109
    [Google Scholar]
  8. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol 14:459–472
    [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395 [CrossRef]
    [Google Scholar]
  10. Ditta G., Stanfield S., Corbin D., Helinski D. R. 1980; Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti . Proc Natl Acad Sci USA 77:7347–7351 [CrossRef]
    [Google Scholar]
  11. Dowling D. N., O’Gara F. 1994; Genetic manipulation of ecologically adapted Pseudomonas strains for PCB degradation. Curr Top Mol Genet 2:1–8
    [Google Scholar]
  12. Dowling D. N., Pipke R., Dwyer D. F. 1993; A DNA module encoding bph genes for the degradation of polychlorinated biphenyls (PCBs). FEMS Microbiol Lett 113:149–154 [CrossRef]
    [Google Scholar]
  13. Erickson B. D., Mondello F. J. 1992; Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyl-degrading enzyme in Pseudomonas strain LB400. J Bacteriol 174:2903–2912
    [Google Scholar]
  14. Fernandez S., Shingler V., de Lorenzo V. 1994; Cross-regulation by XylR and DmpR activators of Pseudomonas putida suggests that transcriptional control of biodegradative operons evolves independently of catabolic genes. J Bacteriol 176:5052–5058
    [Google Scholar]
  15. Haddock J. D., Horton J. R., Gibson D. T. 1995; Dihydroxylation and dechlorination of chlorinated biphenyls by purified biphenyl 2,3-dioxygenase from Pseudomonas sp.strain LB400. . J Bacteriol 177:20–26
    [Google Scholar]
  16. Haydon D. J., Guest J. R. 1991; A new family of bacterial regulatory proteins. FEMS Microbiol Lett 63:291–295
    [Google Scholar]
  17. Herrero M., Timmis K. N., de Lorenzo V. 1990; Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–6567
    [Google Scholar]
  18. Hofer B., Eltis L. D., Dowling D. N., Timmis K. N. 1993; Genetic analysis of a Pseudomonas locus encoding a pathway for biphenyl/polychlorinated biphenyl degradation. Gene 130:47–55 [CrossRef]
    [Google Scholar]
  19. Hofer B., Backhaus S., Timmis K. N. 1994; The biphenyl/polychlorinated biphenyl-degradation locus ( bph ) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene 144:9–16 [CrossRef]
    [Google Scholar]
  20. Hofer B., Blasco R., Megharaj M., Seeger M., McKay D., Wittich R. M., Pieper D. H., Timmis K. N. 1996; Pseudomonas designed for bioremediation and circumvention of undesirable routes. In Pseudomonas: Molecular Biology and Biotechnology pp 121–131 Edited by Nakazawa T., Furukawa K., Haas D., Silver S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Ishimoto K. S., Lory S. 1989; Formation of pilin in Pseudomonas aeruginosa requires the alternative sigma factor (RpoN) of RNA polymerase. Proc Natl Acad Sci USA 86:1954–1957 [CrossRef]
    [Google Scholar]
  22. Kallipolitis B. H., Valentin-Hansen P. 1998; Transcription of rpoH , encoding the Escherichia coli heat-shock regulator σ32, is negatively controlled by the cAMP-CRP/CytR nucleoprotein complex. Mol Microbiol 29:1091–1099 [CrossRef]
    [Google Scholar]
  23. Kato J., Chakrabarty A. M. 1991; Purification of the regulatory protein AlgR1 and its binding in the far upstream region of the algD promoter in Pseudomonas aeruginosa . Proc Natl Acad Sci USA 88:1760–1764 [CrossRef]
    [Google Scholar]
  24. Labbé D., Garnon J., Lau P. C. 1997; Characterization of the genes encoding a receptor-like histidine kinase and a cognate response regulator from a biphenyl/polychlorobiphenyl-degrading bacterium, Rhodococcus sp. strain M5. . J Bacteriol 179:2772–2776
    [Google Scholar]
  25. de Lorenzo V., Herrero M., Jakubzik U., Timmis K. N. 1990; Mini-Tn 5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572
    [Google Scholar]
  26. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Mouz S., Merlin C., Springael D., Toussaint A. 1999; A GntR-like negative regulator of the biphenyl degradation genes of the transposon Tn 4371 . Mol Gen Genet 262:790–799 [CrossRef]
    [Google Scholar]
  28. Nadim L., Schocken M. J., Higson F. J., Gibson D. T., Bedard D. L., Bopp L. H., Mondello F. J. 1987; Bacterial oxidation of polychlorinated biphenyls. In Proceedings of the 13th Annual Research Symposium on Land Disposal, Remedial Action, Incineration, and Treatment of Hazardous Waste pp 395–402 Cincinnati, Ohio: US Environmental Protection Agency (EPA/600/9-87/015);
    [Google Scholar]
  29. Nørregaard-Madsen M., Mygind B., Pedersen R., Valentin-Hansen P., Sogaard-Andersen L. 1994; The gene encoding the periplasmic cyclophilin homologue, PPIase A, in Escherichia coli , is expressed from four promoters, three of which are activated by the cAMP–CRP complex and negatively regulated by the CytR repressor. Mol Microbiol 14:989–997 [CrossRef]
    [Google Scholar]
  30. Pellicer M. T., Badia J., Aguilar J., Baldoma L. 1996; glc locus of Escherichia coli : characterization of genes encoding the subunits of glycolate oxidase and the Glc regulator protein. J Bacteriol 178:2051–2059
    [Google Scholar]
  31. Pellicer M. T., Fernandez C., Badia J., Aguilar J., Lin E. C., Baldoma L. 1999; Cross-induction of glc and ace operons of Escherichia coli attributable to pathway intersection. Characterization of the glc promoter. J Biol Chem 274:1745–1752 [CrossRef]
    [Google Scholar]
  32. Perez-Martin J., de Lorenzo V. 1996; Physical and functional analysis of the prokaryotic enhancer of the sigma 54-promoters of the TOL plasmid of Pseudomonas putida . J Mol Biol 258:562–574 [CrossRef]
    [Google Scholar]
  33. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Schäfer A., Tauch A., Jager W., Kalinowski J., Thierbach G., Pühler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73 [CrossRef]
    [Google Scholar]
  35. Schirmer F., Ehrt S., Hillen W. 1997; Expression, inducer spectrum, domain structure, and function of MopR, the regulator of phenol degradation in Acinetobacter calcoaceticus NCIB8250. J Bacteriol 179:1329–1336
    [Google Scholar]
  36. Seeger M., Timmis K. N., Hofer B. 1995; Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorobiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400. . Appl Environ Microbiol 61:2654–2658
    [Google Scholar]
  37. Seeger M., Zielinski M., Timmis K. N., Hofer B. 1999; Regiospecificity of dioxygenation of di- to pentachlorobiphenyls and their degradation to chlorobenzoates by the bph -encoded catabolic pathway of Burkholderia sp. strain LB400. . Appl Environ Microbiol 65:3614–3621
    [Google Scholar]
  38. Shingler V., Bartilson M., Moore T. 1993; Cloning and nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators. J Bacteriol 175:1596–1604
    [Google Scholar]
  39. Studier F. W. 1991; Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J Mol Biol 219:37–44 [CrossRef]
    [Google Scholar]
  40. Taira K., Hirose J., Hayashida S., Furukawa K. 1992; Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J Biol Chem 267:4844–4853
    [Google Scholar]
  41. Totten P. A., Lara J. C., Lory S. 1990; The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J Bacteriol 172:389–396
    [Google Scholar]
  42. Valentin-Hansen P., Albrechtsen B., Løve Larsen J. E. 1986; DNA–protein recognition: demonstration of three genetically separated operator elements that are required for repression of the Escherichia coli deoCABD promoters by the DeoR repressor. EMBO J 5:2015–2021
    [Google Scholar]
  43. Watanabe T., Inoue R., Kimura N., Furukawa K. 2000; Versatile transcription of biphenyl catabolic bph operon in Pseudomonas pseudoalcaligenes KF707. J Biol Chem 275:31016–31023 [CrossRef]
    [Google Scholar]
  44. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  45. Young I. G., Poulis M. I. 1978; Conjugal transfer of cloning vectors derived from ColE1. Gene 4:175–181 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-8-2169
Loading
/content/journal/micro/10.1099/00221287-147-8-2169
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error