1887

Abstract

Chromosomal gene replacement in cyanobacteria often relies upon the availability of drug resistance markers, and thus multiple replacements have been restricted. Here, a versatile gene replacement system without this restriction is reported in a unicellular cyanobacterium, sp. PCC 7942. The system is based upon the dominance of a streptomycin-sensitive gene encoding a ribosomal S12 protein over a streptomycin-resistant allele with a Lys-43→→→Arg substitution. To demonstrate the utility of this method, a cassette consisting of the wild-type gene and a gene conferring kanamycin resistance was integrated into the mutant at the locus encoding photosystem II D1 protein, resulting in streptomycin-sensitive merodiploids. Despite spontaneous gene conversion in these merodiploids to produce streptomycin-resistant progeny at frequencies ranging from 1×10 to 5×10, homologous recombination could be induced by transforming the merodiploids with template plasmids carrying 5′ and 3′ non-coding sequences flanking the D1 coding sequence, which was then replaced by either the ORF for a green fluorescent protein or a precise deletion. Depending on the replication ability of the template plasmids, at most 3–16% of streptomycin-resistant progeny of the merodiploids after transformation were homogenote recombinants with concomitant loss of the gene, even in these polyploid cyanobacteria. The -mediated gene replacement thus makes it possible to construct mutants free from drug resistance markers and opens a way to create cyanobacterial strains bearing an unlimited number of gene replacements.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-2077
2001-08-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1472077a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-2077&mimeType=html&fmt=ahah

References

  1. Akiyama, H., Kanai, S., Hirano, M. & Miyasaka, H. ( 1998; ). A novel plasmid recombination mechanism of the marine cyanobacterium Synechococcus sp. PCC7002. DNA Res 5, 327-334.[CrossRef]
    [Google Scholar]
  2. Binder, B. J. & Chisholm, S. W. ( 1990; ). Relationship between DNA cycle and growth rate in Synechococcus sp. strain PCC 6301. J Bacteriol 172, 2313-2319.
    [Google Scholar]
  3. Bustos, S. A. & Golden, S. S. ( 1992; ). Light-regulated expression of the psbD gene family in Synechococcus sp. strain PCC 7942: evidence for the role of duplicated psbD genes in cyanobacteria. Mol Gen Genet 232, 221-230.
    [Google Scholar]
  4. Cai, Y. & Wolk, C. P. ( 1990; ). Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J Bacteriol 172, 3138-3145.
    [Google Scholar]
  5. Chauvat, F., De Vries, L., Van der Ende, A. & Van Arkel, G. A. ( 1986; ). A host-vector system for gene cloning in the cyanobacterium Synechocystis PCC 6803. Mol Gen Genet 204, 185-191.[CrossRef]
    [Google Scholar]
  6. Crameri, A., Whitehorn, E. A., Tate, E. & Stemmer, W. P. C. ( 1996; ). Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnol 14, 315-319.[CrossRef]
    [Google Scholar]
  7. Dean, D. ( 1981; ). A plasmid cloning vector for the direct selection of strains carrying recombinant plasmids. Gene 15, 99-102.[CrossRef]
    [Google Scholar]
  8. Finken, M., Kirschner, P., Meier, A., Wrede, A. & Böttger, E. C. ( 1993; ). Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol 9, 1239-1246.[CrossRef]
    [Google Scholar]
  9. Funatsu, G. & Wittmann, H. G. ( 1972; ). Ribosomal proteins. XXXIII. Location of amino-acid replacements in protein S12 isolated from Escherichia coli mutants resistant to streptomycin. J Mol Biol 68, 547-550.[CrossRef]
    [Google Scholar]
  10. Gay, P., Le Coq, D., Steinmetz, M., Berkelman, T. & Kado, C. I. ( 1985; ). Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol 164, 918-921.
    [Google Scholar]
  11. Geerts, D., Bovy, A., de Vrieze, G., Borrias, M. & Weisbeek, P. ( 1995; ). Inducible expression of heterologous genes targeted to a chromosomal platform in the cyanobacterium Synechococcus sp. PCC 7942. Microbiology 141, 831-841.[CrossRef]
    [Google Scholar]
  12. Ghassemian, M. & Straus, N. A. ( 1996; ). Fur regulates the expression of iron-stress genes in the cyanobacterium Synechococcus sp. strain PCC 7942. Microbiology 142, 1469-1476.[CrossRef]
    [Google Scholar]
  13. Golden, S. S., Brusslan, J. & Haselkorn, R. ( 1986; ). Expression of a family of psbA genes encoding a photosystem II polypeptide in the cyanobacterium Anacystis nidulans R2. EMBO J 5, 2789-2798.
    [Google Scholar]
  14. Golden, S. S., Nalty, M. S. & Cho, D. S. ( 1989; ). Genetic relationship of two highly studied Synechococcus strains designated Anacystis nidulans. J Bacteriol 171, 24-29.
    [Google Scholar]
  15. Gondo, Y., Shioyama, Y., Nakao, K. & Katsuki, M. ( 1996; ). A novel positive detection system of in vivo mutations in rpsL (strA) transgenic mice. Mutat Res 360, 1-14.[CrossRef]
    [Google Scholar]
  16. Gorini, L. ( 1974; ). Streptomycin and misreading of the genetic code. In Ribosomes , pp. 791-803. Edited by M. Nomura, A. Tissieres & P. Lengyel. Cold Spring Harbor, NY:Cold Spring Harbor Laboratory.
  17. Hashimoto-Gotoh, T., Tsujimura, A., Kuriyama, K. & Matsuda, S. ( 1993; ). Construction and characterization of new host-vector systems for the enforcement-cloning method. Gene 137, 211-216.[CrossRef]
    [Google Scholar]
  18. Kuhlemeier, C. J., Thomas, A. A. M., Van der Ende, A., Van Leen, R. W., Borrias, W. E., Van den Hondel, C. A. M. J. J. & Van Arkel, G. A. ( 1983; ). A host-vector system for gene cloning in the cyanobacterium Anacystis nidulans R2. Plasmid 10, 156-163.[CrossRef]
    [Google Scholar]
  19. Lederberg, J. ( 1951; ). Streptomycin resistance: a genetically recessive mutation. J Bacteriol 61, 549-550.
    [Google Scholar]
  20. Liu, X.-Q., Gillham, N. W. & Boynton, J. E. ( 1989; ). Chloroplast ribosomal protein gene rps12 of Chlamydomonas reinhardtii. Wild-type sequence, mutation to streptomycin resistance and dependence, and function in Escherichia coli. J Biol Chem 264, 16100-16108.
    [Google Scholar]
  21. Melancon, P., Lemieux, C. & Brakier-Gingras, L. ( 1988; ). A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin. Nucleic Acids Res 16, 9631-9639.[CrossRef]
    [Google Scholar]
  22. Meng, B.-Y., Shinozaki, K. & Sugiura, M. ( 1989; ). Genes for the ribosomal proteins S12 and S7 and elongation factors EF-G and EF-Tu of the cyanobacterium, Anacystis nidulans: structural homology between 16S rRNA and S7 mRNA. Mol Gen Genet 216, 25-30.[CrossRef]
    [Google Scholar]
  23. Montandon, P.-E., Nicolas, P., Schürmann, P. & Stutz, E. ( 1985; ). Streptomycin-resistance of Euglena gracilis chloroplasts: identification of a point mutation in the 16S rRNA gene in an invariant position. Nucleic Acids Res 13, 4299-4310.[CrossRef]
    [Google Scholar]
  24. Murphy, K. C. ( 1998; ). Use of bacteriophage recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180, 2063-2071.
    [Google Scholar]
  25. Murphy, R. C., Gasparich, G. E., Bryant, D. A. & Porter, R. D. ( 1990; ). Nucleotide sequence and further characterization of the Synechococcus sp. strain PCC 7002 recA gene: complementation of a cyanobacterial recA mutation by the Escherichia coli recA gene. J Bacteriol 172, 967-976.
    [Google Scholar]
  26. Nixon, P. J. & Diner, B. A. ( 1994; ). Analysis of water-oxidation mutants constructed in the cyanobacterium Synechocystis sp. PCC 6803. Biochem Soc Trans 22, 338-343.
    [Google Scholar]
  27. Pakrasi, H. B. ( 1995; ). Genetic analysis of the form and function of photosystem I and photosystem II. Annu Rev Genetics 29, 755-776.[CrossRef]
    [Google Scholar]
  28. Powers, T. & Noller, H. F. ( 1991; ). A functional pseudoknot in 16S ribosomal RNA. EMBO J 10, 2203-2214.
    [Google Scholar]
  29. Ried, J. L. & Collmer, A. ( 1987; ). An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in gram-negative bacteria by marker exchange-eviction mutagenesis. Gene 57, 239-246.[CrossRef]
    [Google Scholar]
  30. Robinson, N. J., Robinson, P. J., Gupta, A., Bleasby, A. J., Whitton, B. A. & Morby, A. P. ( 1995; ). Singular overrepresentation of an octameric palindrome, HIP1, in DNA from many cyanobacteria. Nucleic Acids Res 23, 729-735.[CrossRef]
    [Google Scholar]
  31. Robinson, P. J., Cranenburgh, R. M., Head, I. M. & Robinson, N. J. ( 1997; ). HIP1 propagates in cyanobacterial DNA via nucleotide substitutions but promotes excision at similar frequencies in Escherichia coli and Synechococcus PCC 7942. Mol Microbiol 24, 181-189.[CrossRef]
    [Google Scholar]
  32. Russell, C. B. & Dahlquist, F. W. ( 1989; ). Exchange of chromosomal and plasmid alleles in Escherichia coli by selection for loss of a dominant antibiotic sensitivity marker. J Bacteriol 171, 2614-2618.
    [Google Scholar]
  33. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. & Erlich, H. A. ( 1987; ). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487-491.
    [Google Scholar]
  34. Sakai, M., Ogawa, T., Matsuoka, M. & Fukuda, H. ( 1997; ). Photosynthetic conversion of carbon dioxide to ethylene by the recombinant cyanobacterium, Synechococcus sp. PCC 7942, which harbors a gene for the ethylene-forming enzyme of Pseudomonas syringae. J Ferment Bioeng 84, 434-443.[CrossRef]
    [Google Scholar]
  35. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  36. Timms, A. R., Steingrimsdottir, H., Lehmann, A. R. & Bridges, B. A. ( 1992; ). Mutant sequences in the rpsL gene of Escherichia coli B/r: mechanistic implications for spontaneous and ultraviolet light mutagenesis. Mol Gen Genet 232, 89-96.[CrossRef]
    [Google Scholar]
  37. Triglia, T., Peterson, M. G. & Kemp, D. J. ( 1988; ). A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res 16, 8186.[CrossRef]
    [Google Scholar]
  38. Van der Plas, J., Oosterhoff-Teertstra, R., Borrias, M. & Weisbeek, P. ( 1992; ). Identification of replication and stability functions in the complete nucleotide sequence of plasmid pUH24 from the cyanobacterium Synechococcus sp. PCC 7942. Mol Microbiol 6, 653-664.[CrossRef]
    [Google Scholar]
  39. Williams, J. G. K. ( 1988; ). Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol 167, 766-778.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-8-2077
Loading
/content/journal/micro/10.1099/00221287-147-8-2077
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error