1887

Abstract

Glucose-repressible alcohol dehydrogenase II, encoded by the gene of the yeast , is transcriptionally controlled by the activator Adr1, binding UAS1 of the control region. However, even in an null mutant, a substantial level of gene derepression can be detected, arguing for the existence of a further mechanism of activation. Here it is shown that the previously identified UAS2 contains a distantly related variant of the carbon source-responsive element (CSRE) initially found upstream of gluconeogenic genes. In a mutant defective for the CSRE-binding factor Cat8, derepression of an - fusion was reduced to about 12% of the wild-type level. Gene expression in a double mutant decreased almost to the basal level of the glucose-repressed promoter. CSRE present in a single copy turned out to be a weak UAS element, while a significant synergism of gene activation was found in the presence of at least two copies. Its importance for regulated gene activation was confirmed by site-directed mutagenesis of the CSRE in the natural control region. Direct binding of Cat8 to CSRE could be shown by electrophoretic retardation of the corresponding protein/DNA complex in the presence of a specific antibody. In contrast to what was shown previously for CSRE sequence variants, no significant influence of the isofunctional activator Sip4 on CSRE was detected. In conclusion, these results show a derepression of by synergistically acting regulators Adr1 (interacting with UAS1) and Cat8, binding to UAS2 (=CSRE).

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-2037
2001-08-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1472037a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-2037&mimeType=html&fmt=ahah

References

  1. Blumberg H., Eisen A., Sledziewski A., Bader D., Young E. T.. 1987; Two zinc fingers of a yeast regulatory protein shown by genetic evidence to be essential for its function. Nature328:443–445[CrossRef]
    [Google Scholar]
  2. Caspary F., Hartig A., Schüller H.-J.. 1997; Constitutive and carbon source-responsive promoter elements are involved in the regulated expression of the Saccharomyces cerevisiae malate synthase gene MLS1 . Mol Gen Genet255:619–627[CrossRef]
    [Google Scholar]
  3. Celenza J. L., Carlson M.. 1986; A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science233:1175–1180[CrossRef]
    [Google Scholar]
  4. Celenza J. L., Eng F. J., Carlson M.. 1989; Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae : evidence for physical association of the SNF4 protein with the SNF1 protein kinase. Mol Cell Biol9:5045–5054
    [Google Scholar]
  5. Cheng C., Kacherovsky N., Dombek K. M., Camier S., Thukral S. K., Rhim E., Young E. T.. 1994; Identification of potential target genes for Adr1p through characterization of essential nucleotides in UAS1. Mol Cell Biol14:3842–3852
    [Google Scholar]
  6. Cherry J. R., Johnson T. R., Dollard C., Shuster J. R., Denis C. L.. 1989; Cyclic AMP-dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1. Cell56:409–419[CrossRef]
    [Google Scholar]
  7. Chiang Y. C., Komarnitsky P., Chase D., Denis C. L.. 1996; ADR1 activation domains contact the histone acetyltransferase GCN5 and the core transcriptional factor TFIIB. J Biol Chem271:32359–32365[CrossRef]
    [Google Scholar]
  8. Ciriacy M.. 1975; Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae . II. Two loci controlling synthesis of the glucose-repressible ADH II. Mol Gen Genet138:157–164[CrossRef]
    [Google Scholar]
  9. Ciriacy M.. 1977; Isolation and characterization of yeast mutants defective in intermediary carbon metabolism and in carbon catabolite derepression. Mol Gen Genet154:213–220[CrossRef]
    [Google Scholar]
  10. Ciriacy M.. 1979; Isolation and characterization of further cis - and trans -acting regulatory elements involved in the synthesis of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae . Mol Gen Genet176:427–431[CrossRef]
    [Google Scholar]
  11. Cook W. J., Chase D., Audino D. C., Denis C. L.. 1994; Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1c region. Mol Cell Biol14:629–640
    [Google Scholar]
  12. Denis C. L.. 1987; The effects of ADR1 and CCR1 gene dosage on the regulation of the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae . Mol Gen Genet208:101–106[CrossRef]
    [Google Scholar]
  13. Denis C. L., Ciriacy M., Young E. T.. 1981; A positive regulatory gene is required for accumulation of the functional messenger RNA for the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae . J Mol Biol148:355–368[CrossRef]
    [Google Scholar]
  14. Dombek K. M., Young E. T.. 1997; Cyclic AMP-dependent protein kinase inhibits ADH2 expression in part by decreasing expression of the transcription factor gene ADR1 . Mol Cell Biol17:1450–1458
    [Google Scholar]
  15. Dombek K. M., Camier S., Young E. T.. 1993; ADH2 expression is repressed by REG1 independently of mutations that alter the phosphorylation of the yeast transcription factor ADR1 . Mol Cell Biol13:4391–4399
    [Google Scholar]
  16. Dombek K. M., Voronkova V., Raney A., Young E. T.. 1999; Functional analysis of the yeast Glc7-binding protein Reg1 identifies a protein phosphatase type 1-binding motif as essential for repression of ADH2 expression. Mol Cell Biol19:6029–6040
    [Google Scholar]
  17. Donoviel M. S., Young E. T.. 1996; Isolation and identification of genes activating UAS2-dependent ADH2 expression in Saccharomyces cerevisiae . Genetics143:1137–1148
    [Google Scholar]
  18. Donoviel M. S., Kacherovsky N., Young E. T.. 1995; Synergistic activation of ADH2 expression is sensitive to upstream activation sequence 2 (UAS2) orientation, copy number and UAS1–UAS2 helical phasing. Mol Cell Biol15:3442–3449
    [Google Scholar]
  19. Entian K.-D., Schüller H.-J.. 1997; Glucose repression (carbon catabolite repression) in yeast. In Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology, and Applications pp409–434 Edited by Zimmermann F. K., Entian K.-D.. Lancaster, PA: Technomic;
    [Google Scholar]
  20. Gancedo J. M.. 1998; Yeast carbon catabolite repression. Microbiol Mol Biol Rev62:334–361
    [Google Scholar]
  21. Hartzog G. A., Wada T., Handa H., Winston F.. 1998; Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae . Genes Dev12:357–369[CrossRef]
    [Google Scholar]
  22. Haurie V., Perrot M., Mini T., Jeno P., Sagliocco F., Boucherie H.. 2001; The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae . J Biol Chem276:76–85[CrossRef]
    [Google Scholar]
  23. Hedges D., Proft M., Entian K.-D.. 1995; CAT8 , a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae . Mol Cell Biol15:1915–1922
    [Google Scholar]
  24. Hiesinger M., Roth S., Meissner E., Schüller H.-J.. 2001; Contribution of Cat8 and Sip4 to the transcriptional activation of yeast gluconeogenic genes by carbon source-responsive elements. Curr Genet39:68–76[CrossRef]
    [Google Scholar]
  25. Komarnitsky P. B., Klebanow E. R., Weil P. A., Denis C. L.. 1998; ADR1-mediated transcriptional activation requires the presence of an intact TFIID complex. Mol Cell Biol18:5861–5867
    [Google Scholar]
  26. Kratzer S., Schüller H.-J.. 1997; Transcriptional control of the yeast acetyl-CoA synthetase gene, ACS1 , by the positive regulators CAT8 and ADR1 and the pleiotropic repressor UME6 . Mol Microbiol26:631–641[CrossRef]
    [Google Scholar]
  27. Meaden P. G., Dickinson F. M., Mifsud A., Tessier W., Westwater J., Bussey H., Midgley M.. 1997; The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg(2+)-activated acetaldehyde dehydrogenase. Yeast13:1319–1327[CrossRef]
    [Google Scholar]
  28. Myers A. M., Tzagoloff A., Kinney D. M., Lusty C. J.. 1986; Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene45:299–310[CrossRef]
    [Google Scholar]
  29. Rahner A., Gollwitzer B., Schöler A., Martens E., Schüller H.-J.. 1996; Dual influence of the yeast Cat1p (Snf1p) protein kinase on carbon source-dependent transcriptional activation of gluconeogenic genes by the regulatory gene CAT8 . Nucleic Acids Res24:2331–2337[CrossRef]
    [Google Scholar]
  30. Rahner A., Hiesinger M., Schüller H.-J.. 1999; Deregulation of gluconeogenic structural genes by variants of the transcriptional activator Cat8p of the yeast Saccharomyces cerevisiae . Mol Microbiol34:146–156[CrossRef]
    [Google Scholar]
  31. Randez-Gil F., Bojunga N., Proft M., Entian K.-D.. 1997; Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p. Mol Cell Biol17:2502–2510
    [Google Scholar]
  32. Roth S., Schüller H.-J.. 2001; Cat8 and Sip4 mediate regulated transcriptional activation of the yeast malate dehydrogenase gene MDH2 by three carbon source-responsive promoter elements. Yeast18:151–162[CrossRef]
    [Google Scholar]
  33. Schmidt M. C., McCartney R. R.. 2000; β-Subunits of Snf1 kinase are required for kinase function and substrate definition. EMBO J19:4936–4943[CrossRef]
    [Google Scholar]
  34. Schöler A., Schüller H.-J.. 1993; Structure and regulation of the isocitrate lyase gene ICL1 from the yeast Saccharomyces cerevisiae . Curr Genet23:375–381[CrossRef]
    [Google Scholar]
  35. Schöler A., Schüller H.-J.. 1994; A carbon source-responsive promoter element necessary for activation of the isocitrate lyase gene ICL1 is common to genes of the gluconeogenic pathway in the yeast Saccharomyces cerevisiae . Mol Cell Biol14:3613–3622
    [Google Scholar]
  36. Schüller H.-J., Entian K.-D.. 1987; Isolation and expression analysis of two yeast regulatory genes involved in the derepression of glucose-repressible enzymes. Mol Gen Genet209:366–373[CrossRef]
    [Google Scholar]
  37. Schüller H.-J., Entian K.-D.. 1988; Molecular characterization of yeast regulatory gene CAT3 necessary for glucose derepression and nuclear localization of its product. Gene67:247–257[CrossRef]
    [Google Scholar]
  38. Shuster J., Yu J., Cox D., Chan R. V., Smith M., Young E.. 1986; ADR1 -mediated regulation of ADH2 requires an inverted repeat sequence. Mol Cell Biol6:1894–1902
    [Google Scholar]
  39. Sloan J. S., Dombek K. M., Young E. T.. 1999; Post-translational regulation of Adr1 activity is mediated by its DNA binding domain. J Biol Chem274:37575–37582[CrossRef]
    [Google Scholar]
  40. Soni R., Carmichael J. P., Murray J. A. H.. 1993; Parameters affecting lithium acetate-mediated transformation of Saccharomyces cerevisiae and development of a rapid and simplified procedure. Curr Genet24:455–459[CrossRef]
    [Google Scholar]
  41. Thukral S. K., Eisen A., Young E. T.. 1991; Two monomers of yeast transcription factor ADR1 bind a palindromic sequence symmetrically to activate ADH2 expression. Mol Cell Biol11:1566–1577
    [Google Scholar]
  42. Vallari R. C., Cook W. J., Audino D. C., Morgan M. J., Jensen D. E., Laudano A. P., Denis C. L.. 1992; Glucose repression of the yeast ADH2 gene occurs through multiple mechanisms, including control of the protein synthesis of its transcriptional activator, ADR1. Mol Cell Biol12:1663–1673
    [Google Scholar]
  43. Vincent O., Carlson M.. 1998; Sip4, a Snf1 kinase-dependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes. EMBO J17:7002–7008[CrossRef]
    [Google Scholar]
  44. Yang X., Jiang R., Carlson M.. 1994; A family of proteins containing a conserved domain that mediates interaction with the yeast SNF1 protein kinase complex. EMBO J13:5878–5886
    [Google Scholar]
  45. Yu J., Donoviel M. S., Young E. T.. 1989; Adjacent upstream activation sequence elements synergistically regulate transcription of ADH2 in Saccharomyces cerevisiae . Mol Cell Biol9:34–42
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-8-2037
Loading
/content/journal/micro/10.1099/00221287-147-8-2037
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error