1887
Preview this article:
Zoom in
Zoomout

proteinases: resolving the mystery of a gene family, Page 1 of 1

| /docserver/preview/fulltext/micro/147/8/1471997a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-8-1997
2001-08-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/8/1471997a.html?itemId=/content/journal/micro/10.1099/00221287-147-8-1997&mimeType=html&fmt=ahah

References

  1. Beausejour, A., Grenier, D., Goulet, J. P. & Deslauriers, N. ( 1998; ). Proteolytic activation of the interleukin-1β precursor by Candida albicans. Infect Immun 66, 676-681.
    [Google Scholar]
  2. Beggah, S., Lechenne, B., Reichard, U., Foundling, S. & Monod, M. ( 2000; ). Intra- and intermolecular events direct the propeptide-mediated maturation of the Candida albicans secreted aspartic proteinase Sap1p. Microbiology 146, 2765-2773.
    [Google Scholar]
  3. Borg-von Zepelin, M., Beggah, S., Boggian, K., Sanglard, D. & Monod, M. ( 1998; ). The expression of the secreted aspartic proteinases Sap4 to Sap6 from Candida albicans in murine macrophages. Mol Microbiol 28, 543-554.[CrossRef]
    [Google Scholar]
  4. Borg-von Zepelin, M., Meyer, I., Thomssen, R., Würzner, R., Sanglard, D., Telenti, A. & Monod, M. ( 1999; ). HIV-protease inhibitors reduce cell adherence of Candida albicans strains by inhibition of yeast secreted aspartic proteases. J Investig Dermatol 113, 747-751.[CrossRef]
    [Google Scholar]
  5. Caro, L. H., Tettelin, H., Vossen, J. H., Ram, A. F., van den Ende, H. & Klis, F. M. ( 1997; ). In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13, 1477-1489.[CrossRef]
    [Google Scholar]
  6. Cassone, A., De Bernardis, F., Torosantucci, A., Tacconelli, E., Tumbarello, M. & Cauda, R. ( 1999; ). In vitro and in vivo anticandidal activity of human immunodeficiency virus protease inhibitors. J Infect Dis 180, 448-453.[CrossRef]
    [Google Scholar]
  7. De Bernardis, F., Cassone, A., Sturtevant, J. & Calderone, R. ( 1995; ). Expression of Candida albicans SAP1 and SAP2 in experimental vaginitis. Infect Immun 63, 1887-1892.
    [Google Scholar]
  8. De Bernardis, F., Boccanera, M., Adriani, D., Spreghini, E., Santoni, G. & Cassone, A. ( 1997; ). Protective role of antimannan and anti-aspartic proteinase antibodies in an experimental model of Candida albicans vaginitis in rats. Infect Immun 65, 3399-3405.
    [Google Scholar]
  9. De Bernardis, F., Arancia, S., Morelli, L., Hube, B., Sanglard, D., Schäfer, W. & Cassone, A. ( 1999; ). Evidence that members of the secretory aspartic proteinase gene family, in particular SAP2, are virulence factors for Candida vaginitis. J Infect Dis 179, 201-208.[CrossRef]
    [Google Scholar]
  10. Dubois, N., Colina, A. R., Aumont, F., Belhumeur, P. & de Repentigny, L. ( 1998; ). Overexpression of Candida albicans secretory aspartic proteinase 2 and its expression in Saccharomyces cerevisiae do not augment virulence in mice. Microbiology 144, 2299-2310.[CrossRef]
    [Google Scholar]
  11. Ernst, J. F. ( 2000; ). Transcription factors in Candida albicans – environmental control of morphogenesis. Microbiology 146, 1763-1774.
    [Google Scholar]
  12. Fallon, K., Bausch, K., Noonan, J., Huguenel, E. & Tamburini, P. ( 1997; ). Role of aspartic proteases in disseminated Candida albicans infection in mice. Infect Immun 65, 551-556.
    [Google Scholar]
  13. Fidel, P. L., Vazquez, J. A. & Sobel, J. D. ( 1999; ). Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev 12, 80-96.
    [Google Scholar]
  14. Gilfillan, G. D., Sullivan, D. J., Haynes, K., Parkinson, T., Coleman, D. C. & Gow, N. A. ( 1998; ). Candida dubliniensis: phylogeny and putative virulence factors. Microbiology 144, 829-838.[CrossRef]
    [Google Scholar]
  15. Gruber, A., Berlit, J., Speth, C., Lass-Florl, C., Kofler, G., Nagl, M., Borg-von Zepelin, M., Dierich, M. P. & Würzner, R. ( 1999; ). Dissimilar attenuation of Candida albicans virulence properties by human immunodeficiency virus type 1 protease inhibitors. Immunobiology 201, 133-144.[CrossRef]
    [Google Scholar]
  16. Hube, B. ( 1996; ). Candida albicans secreted aspartic proteinases. Curr Top Med Mycol 7, 55-69.
    [Google Scholar]
  17. Hube, B. ( 1998; ). Possible role of proteinases in Candida infections. Rev Iberoam Micol 15, 68-71.
    [Google Scholar]
  18. Hube, B. ( 2000; ). Extracellular proteinases of human pathogenic fungi. Contrib Microbiol 5, 126-137.
    [Google Scholar]
  19. Hube, B., Turver, C. J., Odds, F. C., Eiffert, H., Boulnois, G. J., Köchel, H. & Rüchel, R. ( 1991; ). Sequence of the Candida albicans gene encoding the secretory aspartate proteinase. J Med Vet Mycol 29, 129-132.[CrossRef]
    [Google Scholar]
  20. Hube, B., Monod, M., Schofield, D. A., Brown, A. J. & Gow, N. A. ( 1994; ). Expression of seven members of the gene family encoding secretory aspartic proteinases in Candida albicans. Mol Microbiol 14, 87-99.[CrossRef]
    [Google Scholar]
  21. Hube, B., Sanglard, D., Odds, F. C., Hess, D., Monod, M., Schäfer, W., Brown, A. J. & Gow, N. A. ( 1997; ). Disruption of each of the secreted aspartic proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun 65, 3529-3538.
    [Google Scholar]
  22. Ibrahim, A. S., Filler, S. G., Sanglard, D., Edwards, J. E.Jr & Hube, B. ( 1998; ). Secreted aspartic proteinases and interactions of Candida albicans with human endothelial cells. Infect Immun 66, 3003-3005.
    [Google Scholar]
  23. Jarvis, W. R. ( 1995; ). Epidemiology of nosocomial fungal infections, with emphasis on Candida species. Clin Infect Dis 20, 1526-1530.[CrossRef]
    [Google Scholar]
  24. Kaminishi, H., Hamatake, H., Cho, T., Tamaki, T., Suenaga, N., Fujii, T., Hagihara, Y. & Maeda, H. ( 1994; ). Activation of blood clotting factors by microbial proteinases. FEMS Microbiol Lett 121, 327-332.[CrossRef]
    [Google Scholar]
  25. Koelsch, G., Tang, J., Loy, J. A., Monod, M., Jackson, K., Foundling, S. I. & Lin, X. ( 2000; ). Enzymic characteristics of secreted aspartic proteases of Candida albicans. Biochim Biophys Acta 1480, 117-131.[CrossRef]
    [Google Scholar]
  26. Komano, H., Rockwell, N., Wang, G. T., Krafft, G. A. & Fuller, R. S. ( 1999; ). Purification and characterization of the yeast glycosylphosphatidylinositol-anchored, monobasic-specific aspartyl protease yapsin 2 (Mkc7p). J Biol Chem 274, 24431-24437.[CrossRef]
    [Google Scholar]
  27. Korting, H. C., Schaller, M., Eder, G., Hamm, G., Böhmer, U. & Hube, B. ( 1999; ). Effects of the human immunodefiency virus (HIV) proteinase inihibitors saquinavir and indinavir on the in vitro activities of secreted aspartic proteinases of Candida albicans isolates from HIV-infected patients. Antimicrob Agents Chemother 43, 2038-2042.
    [Google Scholar]
  28. Kretschmar, M., Hube, B., Bertsch, T., Sanglard, D., Merker, R., Schroder, M., Hof, H. & Nichterlein, T. ( 1999; ). Germ tubes and proteinase activity contribute to virulence of Candida albicans in murine peritonitis. Infect Immun 67, 6637-6642.
    [Google Scholar]
  29. Kvaal, C., Lachke, S. A., Srikantha, T., Daniels, K., McCoy, J. & Soll, D. R. ( 1999; ). Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect Immun 67, 6652-6662.
    [Google Scholar]
  30. Magee, B. B., Hube, B., Wright, R. J., Sullivan, P. J. & Magee, P. T. ( 1993; ). The genes encoding the secreted aspartyl proteinases of Candida albicans constitute a family with at least three members. Infect Immun 618, 3240-3243.
    [Google Scholar]
  31. Miyasaki, S. H., White, T. C. & Agabian, N. ( 1994; ). A fourth secreted aspartic proteinase gene (SAP4) and a CARE2 repetitive element are located upstream of the SAP1 gene in Candida albicans. J Bacteriol 176, 1702-1710.
    [Google Scholar]
  32. Monod, M., Togni, G., Hube, B. & Sanglard, D. ( 1994; ). Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol Microbiol 13, 357-368.[CrossRef]
    [Google Scholar]
  33. Monod, M., Hube, B., Hess, D. & Sanglard, D. ( 1998; ). Differential regulation of SAP8 and SAP9, which encode two new members of the secreted aspartic proteinase family in Candida albicans. Microbiology 144, 2731-2737.[CrossRef]
    [Google Scholar]
  34. Monod, M., Jaton-Ogay, K. & Reichard, U. ( 1999; ). Aspergillus fumigatus-secreted proteases as antigenic molecules and virulence factors. Contrib Microbiol 2, 182-192.
    [Google Scholar]
  35. Morrow, B., Srikantha, T. & Soll, D. R. ( 1992; ). Transcription of the gene for a pepsinogen, PEP1, is regulated by white-opaque switching in Candida albicans. Mol Cell Biol 12, 2997-3005.
    [Google Scholar]
  36. Naglik, J. R., Newport, G., White, T. C., Fernandes-Naglik, L. L., Greenspan, J. S., Greenspan, D., Sweet, S. P., Challacombe, S. J. & Agabian, N. ( 1999; ). In vivo analysis of secreted aspartic proteinase expression in human oral candidiasis. Infect Immun 67, 2482-2490.
    [Google Scholar]
  37. Neely, A. N., Miller, R. G. & Holder, I. A. ( 1994; ). Proteolytic activity and fatal gram-negative sepsis in burned mice: effect of exogenous proteinase inhibition. Infect Immun 62, 2158-2164.
    [Google Scholar]
  38. Newport, G. & Agabian, N. ( 1997; ). KEX2 influences Candida albicans proteinase secretion and hyphal formation. J Biol Chem 272, 28954-28961.[CrossRef]
    [Google Scholar]
  39. Odds, F. C. ( 1994; ). Candida species and virulence. ASM News 60, 313-318.
    [Google Scholar]
  40. Rüchel, R. ( 1992; ). Proteinase. In New Strategies in Fungal Disease , pp. 17-31. Edited by J. E. Bennett, R. J. Hay & P. K. Peterson. Edinburgh:Churchill Livingstone.
  41. Rüchel, R., Zimmermann, F., Böning-Stutzer, B. & Helmchen, U. ( 1991; ). Candidosis visualised by proteinase-directed immunofluorescence. Virchows Arch A Pathol Anal Histopathol 419, 199-202.[CrossRef]
    [Google Scholar]
  42. Sanglard, D., Hube, B., Monod, M., Odds, F. C. & Gow, N. A. ( 1997; ). A triple deletion of the secreted aspartic proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 65, 3539-3546.
    [Google Scholar]
  43. Schaller, M., Schäfer, W., Korting, H. C. & Hube, B. ( 1998; ). Differential expression of secreted aspartic proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Mol Microbiol 29, 605-615.[CrossRef]
    [Google Scholar]
  44. Schaller, M., Hube, B., Ollert, M. W., Schäfer, W., Borg-von Zepelin, M., Thoma-Greber, E. & Korting, H. C. ( 1999a; ). In vivo expression and localization of Candida albicans secreted aspartic proteinases during oral candidosis in HIV-infected patients. J Investig Dermatol 112, 383-386.[CrossRef]
    [Google Scholar]
  45. Schaller, M., Korting, H. C., Schäfer, W., Bastert, J., Chen, W. & Hube, B. ( 1999b; ). Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol Microbiol 34, 169-180.[CrossRef]
    [Google Scholar]
  46. Schaller, M., Schackert, C., Korting, H. C., Januschke, E. & Hube, B. ( 2000; ). Invasion of Candida albicans correlates with expression of secreted aspartic proteinases during experimental infection of human epidermis. J Investig Dermatol 114, 712-717.[CrossRef]
    [Google Scholar]
  47. Schröppel, K., Sprosser, K., Whiteway, M., Thomas, D. Y., Röllinghoff, M. & Csank, C. ( 2000; ). Repression of hyphal proteinase expression by the mitogen-activated protein (MAP) kinase phosphatase cpp1p of Candida albicans is independent of the MAP kinase cek1p. Infect Immun 68, 7159-7161.[CrossRef]
    [Google Scholar]
  48. Sobel, J. D. ( 1985; ). Epidemiology and pathogenesis of recurrent vulvovaginal candidiasis. Am J Obstet Gynecol 152, 924-935.[CrossRef]
    [Google Scholar]
  49. Smolenski, G., Sullivan, P. A., Cutfield, S. M. & Cutfield, J. F. ( 1997; ). Analysis of secreted aspartic proteinases from Candida albicans: purification and characterization of individual Sap1, Sap2 and Sap3 isoenzymes. Microbiology 143, 349-356.[CrossRef]
    [Google Scholar]
  50. Soll, D. R. ( 1997; ). Gene regulation during high-frequency switching in Candida albicans. Microbiology 143, 279-288.[CrossRef]
    [Google Scholar]
  51. Staib, F. ( 1965; ). Serum-proteins as nitrogen source for yeastlike fungi. Sabouraudia 4, 187-193.
    [Google Scholar]
  52. Staib, P., Kretschmar, M., Nichterlein, T., Köhler, G., Michel, S., Hof, H., Hacker, J. & Morschhäuser, J. ( 1999; ). Host-induced, stage-specific virulence gene activation in Candida albicans during infection. Mol Microbiol 32, 533-546.[CrossRef]
    [Google Scholar]
  53. Staib, P., Kretschmar, M., Nichterlein, T., Hof, H. & Morschhäuser, J. ( 2000; ). Differential activation of a Candida albicans virulence gene family during infection. Proc Natl Acad Sci USA 97, 6102-6107.[CrossRef]
    [Google Scholar]
  54. Stehr, F., Felk, A., Kretschmar, M., Schaller, M., Schafer, W. & Hube, B. ( 2000; ). Extracellular hydrolytic enzymes and their relevance during Candida albicans infections. Mycoses 43, Suppl. 2, 17–21.
    [Google Scholar]
  55. Togni, G., Sanglard, D., Quadroni, M., Foundling, S. I. & Monod, M. ( 1996; ). Acid proteinase secreted by Candida tropicalis: functional analysis of preproregion cleavages in C. tropicalis and Saccharomyces cerevisiae. Microbiology 142, 493-503.[CrossRef]
    [Google Scholar]
  56. Tsushima, H. & Mine, H. ( 1995; ). Cleavage of human big endothelin-1 by Candida albicans aspartic proteinase. FEMS Immunol Med Microbiol 11, 69-72.[CrossRef]
    [Google Scholar]
  57. Tsushima, H., Mine, H., Kawakami, Y., Hyodoh, F. & Ueki, A. ( 1994; ). Candida albicans aspartic proteinase cleaves and inactivates human epidermal cysteine proteinase inhibitor, cystatin A. Microbiology 140, 167-171.[CrossRef]
    [Google Scholar]
  58. Watts, H. J., Cheah, F. S., Hube, B., Sanglard, D. & Gow, N. A. ( 1998; ). Altered adherence in strains of Candida albicans harbouring null mutations in secreted aspartic proteinase genes. FEMS Microbiol Lett 159, 129-135.[CrossRef]
    [Google Scholar]
  59. White, T. C. & Agabian, N. ( 1995; ). Candida albicans secreted aspartic proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol 177, 5215-5221.
    [Google Scholar]
  60. White, T. C., Miyasaki, S. H. & Agabian, N. ( 1993; ). Three distinct secreted aspartic proteinases in Candida albicans. J Bacteriol 175, 6126-6133.
    [Google Scholar]
  61. Wright, R. J., Carne, A., Hieber, A. D., Lamont, I. L., Emerson, G. W. & Sullivan, P. A. ( 1992; ). A second gene for a secreted aspartate proteinase in Candida albicans. J Bacteriol 174, 7848-7853.
    [Google Scholar]
  62. Zaugg, C., Borg-Von Zepelin, M., Reichard, U., Sanglard, D. & Monod, M. ( 2001; ). Secreted aspartic proteinase family of Candida tropicalis. Infect Immun 69, 405-412.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-8-1997
Loading
/content/journal/micro/10.1099/00221287-147-8-1997
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error