1887

Abstract

The mechanisms of incorporation of two antigens have been determined using a monoclonal antibody (3A10) raised against the material released from the mycelial cell wall by zymolyase digestion and retained on a concanavalin A column. One of the hybridomas secreted an IgG that reacted with two bands in Western blots. Indirect immunofluorescence showed that the antigens were located on the surfaces of mycelial cells, but within the cell walls of yeasts. These antigens were detected in a membrane preparation, in the SDS-soluble material and in the material released by a 1,3-β-glucanase and chitinase from the cell walls of yeast and mycelial cells. In the latter three samples, an additional high-molecular-mass, highly polydispersed band was also detected. Beta-elimination of each fraction resulted in the disappearance of all antigen bands, suggesting that they are highly -glycosylated. In addition, the electrophoretic mobility of the high-molecular-mass, highly polydispersed bands increased after digestion with endoglycosidase H, indicating that they are also -glycosylated. New antigen bands were released when remnants of the cell walls extracted with 1,3-β-glucanase or chitinase were digested with chitinase or 1,3-β-glucanase. These results are consistent with the notion that, after secretion, parts of the -glycosylated antigen molecules are transferred to an -glycosylated protein(s). This molecular complex, as well as the remaining original 70 and 80 kDa antigen molecules, next bind to 1,3-β-glucan or chitin, probably via 1,6-β-glucan, and, in an additional step, to chitin or 1,3-β-glucan. This process results in the final molecular product of each antigen, and their distribution in the cell walls.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-7-1983
2001-07-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/7/1471983a.html?itemId=/content/journal/micro/10.1099/00221287-147-7-1983&mimeType=html&fmt=ahah

References

  1. Aguado, C., Ruiz-Herrera, J., Iranzo, M., Sentandreu, R. & Mormeneo, S. ( 1998; ). Reaggregation and binding of cell wall proteins from Candida albicans to structural polysaccharides. Res Microbiol 149, 327-338.[CrossRef]
    [Google Scholar]
  2. Burnette, W. N. ( 1981; ). ‘‘Western blotting’’: electrophoretic transfer of protein from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated proteins. Anal Biochem 112, 195-203.[CrossRef]
    [Google Scholar]
  3. Cappellaro, C., Mrsa, V. & Tanner, W. ( 1998; ). New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating. J Bacteriol 180, 5030-5037.
    [Google Scholar]
  4. De la Cruz, J., Pintor-Toro, J. A., Benitez, T. & Llobell, A. ( 1995; ). Purification and characterization of an endo-β-1,6-glucanase from Trichoderma harzianum that is related to its mycoparasitism. J Bacteriol 177, 1864-1871.
    [Google Scholar]
  5. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. ( 1956; ). Colorimetric method for determination of sugars and related substances. Anal Chem 28, 350-356.[CrossRef]
    [Google Scholar]
  6. Elorza, M. V., Murgui, A. & Sentandreu, R. ( 1985; ). Dimorphism in Candida albicans: contribution of mannoproteins to the architecture of yeast and mycelial cells. J Gen Microbiol 131, 2209-2216.
    [Google Scholar]
  7. Elorza, M. V., Mormeneo, S., Garcia de la Cruz, F., Gimeno, C. & Sentandreu, R. ( 1989; ). Evidence for the formation of covalent bonds between macromolecules in the domain of the wall of Candida albicans mycelial cells. Biochem Biophys Res Commun 162, 1118-1125.[CrossRef]
    [Google Scholar]
  8. Eroles, P., Sentandreu, M., Elorza, M. V. & Sentandreu, R. ( 1997; ). The highly immunogenic enolase and Hsp70p are adventitious Candida albicans cell wall proteins. Microbiology 143, 313-320.[CrossRef]
    [Google Scholar]
  9. Fonzi, W. A. ( 1999; ). PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of β-1,3- and β-1,6-glucans. J Bacteriol 181, 7070-7079.
    [Google Scholar]
  10. Galfre, G. & Milstein, C. ( 1981; ). Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol 73, 3-46.
    [Google Scholar]
  11. Glee, P. M. & Hazen, K. C. ( 1995; ). Aggregation of hydrophobic cell wall proteins of Candida albicans. Colloids Surf B: Biointerfaces 5, 181-188.[CrossRef]
    [Google Scholar]
  12. Kapteyn, J. C., Montijn, R. C., Dijkgraaf, G. J., Van den Ende, H. & Klis, F. M. ( 1995; ). Covalent association of β-1,3-glucan with beta-1,6-glucosylated mannoproteins in cell walls of Candida albicans. J Bacteriol 177, 3788-3792.
    [Google Scholar]
  13. Kapteyn, J. C., Ram, A. F., Groos, E. M., Kollár, R., Montijn, R. C., Van Den Ende, H., Llobell, A., Cabib, E. & Klis, F. M. ( 1997; ). Altered extent of cross-linking of beta-1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall beta-1,3-glucan content. J Bacteriol 179, 6279-6284.
    [Google Scholar]
  14. Kapteyn, J. C., Van Egmond, P., Sievi, E., Van Den Ende, H., Makarow, M. & Klis, F. M. ( 1999; ). The contribution of the O-glycosylated protein Pir2p/Hsp150 to the construction of the yeast cell wall in wild-type cells and beta 1,6-glucan-deficient mutants. Mol Microbiol 31, 1835-1844.[CrossRef]
    [Google Scholar]
  15. Kapteyn, J. C., Hoyer, L. L., Hecht, J. E., Muller, W. H., Andel, A., Verkleij, A. J., Makarow, M., Van Den Ende, H. & Klis, F. M. ( 2000; ). The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 35, 601-611.
    [Google Scholar]
  16. Kollár, R., Reinhold, B. B., Petráková, E., Yeh, H. J., Ashwell, G., Drgonova, J., Kapteyn, J. C., Klis, F. M. & Cabib, E. ( 1997; ). Architecture of the yeast cell wall. β(1→6)-glucan interconnects mannoprotein, β(1→)3-glucan, and chitin. J Biol Chem 272, 17762-17775.[CrossRef]
    [Google Scholar]
  17. Laemmli, K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  18. Lee, K. L., Buckley, M. R. & Campbell, C. ( 1975; ). An amino acid liquid synthetic medium for development of mycelial and yeast forms of Candida albicans. Sabouraudia 13, 148-153.[CrossRef]
    [Google Scholar]
  19. Lindberg, B. & McPherson, J. ( 1954; ). Studies on the chemistry of lichens. VI. The structure of pustulan. Acta Chem Scand 8, 985-989.[CrossRef]
    [Google Scholar]
  20. Pastor, F. I. J., Valentı́n, E., Herrero, E. & Sentandreu, R. ( 1984; ). Structure of the Saccharomyces cerevisiae cell wall: mannoproteins released by Zymolyase and their contribution to wall architecture. Biochim Biophys Acta 802, 292-300.[CrossRef]
    [Google Scholar]
  21. Pegg, G. F. ( 1988; ). Chitinase from tomato Lycopersicon esculentum. Methods Enzymol 161, 484-489.
    [Google Scholar]
  22. Popolo, L. & Vai, M. ( 1998; ). Defects in assembly of the extracellular matrix are responsible for altered morphogenesis of a Candida albicans phr1 mutant. J Bacteriol 180, 163-166.
    [Google Scholar]
  23. Ram, A. F., Kapteyn, J. C., Montijn, R. C., Caro, L. H., Douwes, J. E., Baginsky, W., Mazur, P., van den Ende, H. & Klis, F. M. ( 1998; ). Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of β-1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J Bacteriol 180, 1418-1424.
    [Google Scholar]
  24. Ramón, A. M., Montero, M., Sentandreu, R. & Valentı́n, E. ( 1999; ). Yarrowia lipolytica cell wall architecture: interaction of Ywp1, a mycelial protein, with other wall components and the effect of its depletion. Res Microbiol 150, 95-103.[CrossRef]
    [Google Scholar]
  25. Reese, E. T., Parrish, F. W. & Mandels, M. ( 1962; ). β-d-1,6-Glucanases in fungi. Can J Microbiol 8, 327-334.[CrossRef]
    [Google Scholar]
  26. Ruiz-Herrera, J., Iranzo, M., Elorza, M. V., Sentandreu, R. & Mormeneo, S. ( 1995; ). Involvement of transglutaminase in the formation of covalent cross-links in the cell wall of Candida albicans. Arch Microbiol 164, 186-193.[CrossRef]
    [Google Scholar]
  27. Sundstrom, P. & Kenny, G. E. ( 1985; ). Enzymatic release of germ-tube specific antigens from cell walls of Candida albicans. Infect Immun 56, 601-606.
    [Google Scholar]
  28. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76, 4350-4354.[CrossRef]
    [Google Scholar]
  29. Valentı́n, E., Mormeneo, S. & Sentandreu, R. ( 2000; ). The cell surface of Candida albicans during morphogenesis. In Dimorphism in Human Pathogenic and Apathogenic Yeasts , pp. 138-150. Edited by J. F. Ernest & A. Schmidt. Basel:Karger.
  30. Van der Vaart, J. M., Biesebeke, R., Chapman, J. W., Klis, F. M. & Verrips, C. T. ( 1996; ). The beta-1,6-glucan containing side-chain of cell wall proteins of Saccharomyces cerevisiae is bound to the glycan core of the GPI moiety. FEMS Microbiol Lett 145, 401-407.
    [Google Scholar]
  31. Voller, A., Bidwell, D. & Barlett, A. ( 1980; ). Enzyme-linked immunosorbent assay. In Manual of Clinical Immunology , pp. 359-371. Edited by D. C. N. R. Rose & H. Friedman. Washington, DC:American Society for Microbiology.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-7-1983
Loading
/content/journal/micro/10.1099/00221287-147-7-1983
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error