1887

Abstract

An enantioselective amidase was purified to homogeneity from d3. The enzyme has a molecular mass of about 490000 Da and is composed of identical subunits with a molecular mass of about 63000 Da. The purified enzyme converted racemic 2-phenylpropionamide to the corresponding -acid with an enantiomeric excess () value >95% at almost 50% conversion of the racemic amide. The purified enzyme was digested with trypsin and the amino acid sequences of the N terminus and different tryptic peptides determined. These amino acid sequences were used to clone the encoding gene. Finally, a 9330 bp DNA fragment was sequenced and the amidase gene identified. The deduced amino acid sequence showed homology to other enantioselective amidases from different bacterial genera. No indications of a structural coupling of the amidase gene with the genes for a nitrile hydratase could be found on the cloned DNA fragment. The amidase gene was encoded by an approximately 500 kb circular plasmid in d3. The amidase was heterologously expressed in and, as well as 2-phenylpropionamide, was shown to hydrolyse α-chloro- and α-methoxyphenylacetamide and 2-methyl-3-phenylpropionamide highly enantioselectively. Some amino acids within a highly conserved region common amongst all known enantioselective amidases (‘amidase signature’) were changed by site-specific mutagenesis and significant changes in the relative activities with different amides observed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-7-1815
2001-07-01
2024-12-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/7/1471815a.html?itemId=/content/journal/micro/10.1099/00221287-147-7-1815&mimeType=html&fmt=ahah

References

  1. Alting-Mees M. A., Sorge J. A., Short J. M. 1992; pBlueskriptII: multifunctional cloning and mapping vectors. Methods Enzymol 216:483–495
    [Google Scholar]
  2. Anschütz R., Böcker R. 1909; Über die Einwirkung von Acetylmandelsäurechlorid auf Natriummalonsäureester und auf Natriumcyanessigester. Liebigs Ann Chem 368:53–75 [CrossRef]
    [Google Scholar]
  3. Ault R. G., Hawort W. N., Hirst E. L. 1934; The constitution of absorbic acid. Action of sodium hypochlorite on α-methoxy-acid amides. J Chem Soc1722–1726
    [Google Scholar]
  4. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology Vol. 1 New York, Chichester, Brisbane, Toronto: Wiley;
    [Google Scholar]
  5. Barton B. M., Hardening G. P., Zuccarelli A. J. 1995; A general method for detecting and sizing large plasmids. Anal Biochem 226:234–240
    [Google Scholar]
  6. Bauer R., Hirrlinger B., Layh N., Stolz A., Knackmuss H.-J. 1994; Enantioselective hydrolysis of racemic 2-phenylpropionitrile and other ( R,S )-2-arylpropionitriles by a new bacterial isolate, Agrobacterium tumefaciens strain d3. Appl Microbiol Biotechnol 42:1–7 [CrossRef]
    [Google Scholar]
  7. Bauer R., Knackmuss H.-J., Stolz A. 1998; Enantioselective hydration of 2-arylpropionitriles by a nitrile hydratase from Agrobacterium tumefaciens d3. Appl Microbiol Biotechnol 49:89–95 [CrossRef]
    [Google Scholar]
  8. Beard T., Cohen M. A., Parratt J. S., Turner N. J., Crosby J., Moilliet J. 1993; Stereoselective hydrolysis of nitriles and amides under mild conditions using a whole cell catalyst. Tetrahedron Asymmetry 4:1085–1104 [CrossRef]
    [Google Scholar]
  9. Bergmann M., Miekeley A. 1924; Derivate des d,l-Serin. Über neuartige Anhydride des Glycylserin. Hoppe-Seyler’s Z Physiol Chem 140:128–145 [CrossRef]
    [Google Scholar]
  10. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  11. Bunch A. W. 1998; Nitriles. In Biotechnology Vol. 8a, Biotransformations I pp 277–324 Edited by Kelly D. R. Weinheim, New York, Chichester, Brisbane, Singapore, Toronto: Wiley-VCH;
    [Google Scholar]
  12. Chebrou H., Bigey F., Arnaud A., Galzy P. 1996a; Study of the amidase signature group. Biochim Biophys Acta 1298:285–293 [CrossRef]
    [Google Scholar]
  13. Chebrou H., Bigey F., Arnaud A., Galzy P. 1996b; Amide metabolism: a putative ABC transporter in Rhodococcus sp. R312 Gene 182215–218 [CrossRef]
  14. Chen C.-C., Fujimoto Y., Girdaukas G., Sih C. J. 1982; Quantitative analysis of biochemical kinetic resolutions of enantiomers. J Am Chem Soc 104:7294–7299 [CrossRef]
    [Google Scholar]
  15. Chu G., Vollrath D., Davis R. W. 1986; Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234:1582–1585 [CrossRef]
    [Google Scholar]
  16. Ciskanik L. M., Wilczek J. M., Fallon R. D. 1995; Purification and characterization of an enantioselective amidase from Pseudomonas chlororaphis B23. Appl Environ Microbiol 61:998–1003
    [Google Scholar]
  17. Cohen M. A., Parratt J. S., Turner N. J. 1992; Enantioselective hydrolysis of nitriles and amides using an immobilised whole cell system. Tetrahedron Asymmetry 3:1543–1546 [CrossRef]
    [Google Scholar]
  18. Eulberg D., Golovleva L. A., Schlömann M. 1997; Characterization of catechol catabolic genes from Rhodococcus erythropolis 1CP. J Bacteriol 179:370–381
    [Google Scholar]
  19. Gilligan T., Yamada H., Nagasawa T. 1993; Production of S -(+)-2-phenylpropionic acid from ( R,S )-2-phenylpropionitrile by the combination of nitrile hydratase and stereoselective amidase in Rhodococcus equi TG328. Appl Microbiol Biotechnol 39:720–725 [CrossRef]
    [Google Scholar]
  20. Hayashi T., Yamamoto K., Matsuo A., Otsubo K., Muramatsu S., Matsuda A., Komatsu K.-I. 1997; Characterization and cloning of an enantioselective amidase from Comamonas acidovorans KPO-2771-4. J Ferment Bioeng 83:139–145 [CrossRef]
    [Google Scholar]
  21. Hirrlinger B., Stolz A., Knackmuss H.-J. 1996; Purification and properties of an amidase from Rhodococcus erythropolis MP50 which enantioselectively hydrolyzes 2-arylpropionamides. J Bacteriol 178:3501–3507
    [Google Scholar]
  22. Hooykaas P. J. J., Beijersbergen A. G. M. 1994; The virulence system of Agrobacterium tumefaciens . Annu Rev Phytopathol 32:157–179 [CrossRef]
    [Google Scholar]
  23. Inoue H., Nojima H., Okayama H. 1990; High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28 [CrossRef]
    [Google Scholar]
  24. Kakeya H., Sakai N., Sugai T., Ohta H. 1991; Microbial hydrolysis as a potent method for the preparation of optically active nitriles, amides and carboxylic acids. Tetrahedron Lett 32:1343–1346 [CrossRef]
    [Google Scholar]
  25. Kenyon J., Ross W. A. 1951; The mechanism of the decarboxylation of substituted malonic acid derivatives. J Chem Soc2407–2411
    [Google Scholar]
  26. Kobayashi M., Shimizu S. 1994; Versatile nitrilases: nitrile-hydrolysing enzymes. FEMS Microbiol Lett 120:217–224 [CrossRef]
    [Google Scholar]
  27. Kobayashi M., Nishiyama M., Nagasawa T., Horinouchi S., Beppu T., Yamada H. 1991; Cloning, nucleotide sequence and expression in Escherichia coli of two cobalt-containing nitrile hydratases from Rhodococcus rhodochrous J1. Biochim Biophys Acta 129:23–33
    [Google Scholar]
  28. Kobayashi M., Nagasawa T., Yamada H. 1992; Enzymatic synthesis of acrylamide: a success story not yet over. Tibtech 10:402–408 [CrossRef]
    [Google Scholar]
  29. Kobayashi M., Komeda H., Nagasawa T., Nishiyama M., Horinouchi S., Beppu T., Yamada H., Shimizu S. 1993; Amidase coupled with low-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1. Eur J Biochem 217:327–336 [CrossRef]
    [Google Scholar]
  30. Kobayashi M., Fujiwara Y., Goda M., Komeda H., Shimizu S. 1997; Identification of active sites in amidases: evolutionary relationship between amide bond- and peptide-bond cleaving enzymes. Proc Natl Acad Sci USA 94:11986–11991 [CrossRef]
    [Google Scholar]
  31. Komeda H., Kobayashi M., Shimizu S. 1996; A novel gene cluster including the Rhodococcus rhodochrous J1 nhlBA genes encoding a low molecular mass nitrile hydratase(L-NHase) induced by its reaction product. J Biol Chem 271:15796–15802 [CrossRef]
    [Google Scholar]
  32. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  33. Layh N., Hirrlinger B., Stolz A., Knackmuss H.-J. 1997; Enrichment strategies for nitriles hydrolysing bacteria. Appl Microbiol Biotechnol 47:668–674 [CrossRef]
    [Google Scholar]
  34. Marchuk D., Drumm M., Saulino A., Collins F. S. 1991; Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res 19:1154 [CrossRef]
    [Google Scholar]
  35. Mayaux J.-F., Cerbelaud E., Soubrier F., Faucher D., Pétré D. 1990; Purification, cloning, and primary structure of an enantiomer-selective amidase from Brevibacterium sp. strain R312: Structural evidence for genetic coupling with nitrile hydratase. J Bacteriol 172:6764–6773
    [Google Scholar]
  36. Mayaux J.-F., Cerbelaud E., Soubrier F., Yeh P., Blanche F., Pétré D. 1991; Purification, cloning, and primary structure of a new enantiomer-selective amidase from a Rhodococcus strain: Structural evidence for a conserved genetic coupling with nitrile hydratase. J Bacteriol 173:6694–6704
    [Google Scholar]
  37. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. 1981; Ultrasensitive stain for proteins in polyacrylamide gels shows regional variations in cerebrospinal fluid proteins. Science 211:1437–1438 [CrossRef]
    [Google Scholar]
  38. Mills J., Wyborn N. R., Greenwood J. A., Williams S. G., Jones C. W. 1998; Characterization of a binding-protein-dependent, active transport system for short-chain amides and urea in the methylotrophic bacterium Methylophilus methylotrophus . Eur J Biochem 251:45–53 [CrossRef]
    [Google Scholar]
  39. Nishiyama M., Horinouchi S., Kobayashi M., Nagasawa T., Yamada H., Beppu T. 1991; Cloning and characterization of genes responsible for metabolism of nitrile compounds from Pseudomonas chlororaphis B23. J Bacteriol 173:2465–2472
    [Google Scholar]
  40. Paulus F., Canaday J., Vincent F., Bonnard G., Kares C., Otten L. 1991; Sequence of the iaa and ipt region of different Agrobacterium tumefaciens biotype III octopine strains: reconstruction of octopine Ti plasmid evolution. Plant Mol Biol 16:601–614 [CrossRef]
    [Google Scholar]
  41. Payne M. S., Wu S., Fallon R. D., Tudor G., Stieglitz B., Turner I. M. Jr, Nelson M. J. 1997; A stereoselective cobalt-containing nitrile hydratase. Biochemistry 36:5447–5454 [CrossRef]
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Schröder G., Waffenschmidt S., Weiler E. W., Schröder J. 1984; The T-region of Ti-plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 138:387–391 [CrossRef]
    [Google Scholar]
  44. Stone K. L., LoPresti M. B., Crawford J. M., DeAngelis R., Williams K. R. 1989; Enzymatic digestion of proteins and HPLC peptide isolation. In A Practical Guide to Protein and Peptide Purification for Microsequencing pp 31–47 Edited by Matsudaira P. T. San Diego, CA: Academic Press;
    [Google Scholar]
  45. Sugai T., Yamazaki T., Yokoyama M., Ohta H. 1997; Biocatalysis in organic synthesis. The use of nitrile- and amide-hydrolysing microorganisms. Biosci Biotechnol Biochem 61:1419–1427 [CrossRef]
    [Google Scholar]
  46. Volff J. N., Eichenseer C., Viell P., Piendl W., Altenbuchner J. 1996; Nucleotide sequence and role in DNA amplification of the direct repeats composing the amplifiable element AUD1 of Streptomyces lividans 66 . J Mol Microbiol 21:1037–1047 [CrossRef]
    [Google Scholar]
  47. Wilson S., Drew R. 1991; Cloning and DNA sequence of amiC , a new gene regulating expression of the Pseudomonas aeruginosa aliphatic amidase, and purification of the amiC product. J Bacteriol 173:4914–4921
    [Google Scholar]
  48. Wilson S. A., Wachira S. J., Drew R. E., Jones D., Pearl L. H. 1993; Antitermination of amidase expression in Pseudomonas aeruginosa is controlled by a novel cytoplasmatic amide-binding protein. EMBO J 12:3637–3642
    [Google Scholar]
  49. Wilson S. A., Williams R. J., Pearl L. H., Drew R. E. 1995; Identification of two new genes in the Pseudomonas aeruginosa amidase operon, encoding an ATPase (AmiB) and a putative integral membrane protein (AmiS. J Biol Chem 270:18818–18824 [CrossRef]
    [Google Scholar]
  50. Wu S., Fallon R. D., Payne M. S. 1998; Cloning and nucleotide sequence of amidase gene from Pseudomonas putida . DNA Cell Biol 17:915–920 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/00221287-147-7-1815
Loading
/content/journal/micro/10.1099/00221287-147-7-1815
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error