1887

Abstract

The immune inhibitor A (InhA) metalloprotease from specifically cleaves antibacterial proteins produced by the insect host, suggesting that it may contribute to the overall virulence of . The transcriptional regulation of the gene in both and was investigated. Using a transcriptional fusion, it was shown that expression is activated at the onset of sporulation. However, the transcriptional start site of is similar to σ-dependent promoters, and deletion of the sporulation-specific sigma factors σ or σ had no effect on expression in . The DNA region upstream from contains two genes encoding polypeptides similar to the SinI and SinR regulators of . SinR is a DNA-binding protein regulating gene expression and SinI inhibits SinR activity. Overexpression of the genes affects the expression of the transcriptional fusion in : early induction of expression was observed when was overexpressed, whereas expression was reduced in a strain overexpressing , suggesting that transcription is repressed, directly or indirectly, by SinR. transcription was greatly reduced in and mutants. Analysis of the expression in and mutants of indicates that the Spo0A-dependent regulation of expression depends on AbrB, which is known to regulate expression of transition state and sporulation genes in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-7-1805
2001-07-01
2020-03-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/7/1471805a.html?itemId=/content/journal/micro/10.1099/00221287-147-7-1805&mimeType=html&fmt=ahah

References

  1. Agaisse H., Lereclus D. 1994; Structural and functional analysis of the promoter region involved in full expression of the cryIIIA toxin gene of Bacillus thuringiensis . Mol Microbiol13:97–107[CrossRef]
    [Google Scholar]
  2. Agaisse H., Gominet M., Økstad O. A., Kolstø A. B., Lereclus D. 1999; PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis . Mol Microbiol32:1043–1053[CrossRef]
    [Google Scholar]
  3. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis . J Bacteriol81:741–746
    [Google Scholar]
  4. Arantes O., Lereclus D. 1991; Construction of cloning vectors for Bacillus thuringiensis . Gene108:115–119[CrossRef]
    [Google Scholar]
  5. Bai U., Mandic M. I., Smith I. 1993; SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis , by protein–protein interaction. Genes Dev7:139–148[CrossRef]
    [Google Scholar]
  6. Bird T. H., Grimsley J. K., Hoch J. A., Spiegelman G. B. 1993; Phosphorylation of Spo0A activates its stimulation of in vitro transcription from the Bacillus subtilis spoIIG operon. Mol Microbiol9:741–749[CrossRef]
    [Google Scholar]
  7. Charlton S., Baillie A. J., Moir A. 1999; Characterisation of exosporium of Bacillus cereus . J Appl Microbiol87:241–245[CrossRef]
    [Google Scholar]
  8. Dalhammar G., Steiner H. 1984; Characterization of inhibitor A, a protease from Bacillus thuringiensis which degrades attacins and cecropins, two classes of antibacterial proteins in insects. Eur J Biochem139:247–252[CrossRef]
    [Google Scholar]
  9. Dubnau D. 1991; The regulation of genetic competence in Bacillus subtilis. Mol Microbiol 5. 11–18[CrossRef]
  10. Edlund T., Siden I., Boman H. G. 1976; Evidence for two immune inhibitors from Bacillus thuringiensis interfering with the humoral defense system of saturniid pupae. Infect Immun14:934–941
    [Google Scholar]
  11. Gaur N. K., Dubnau E., Smith I. 1986; Characterization of a cloned Bacillus subtilis gene that inhibits sporulation in multiple copies. J Bacteriol168:860–869
    [Google Scholar]
  12. Gaur N. K., Cabane K., Smith I. 1988; Structure and expression of the Bacillus subtilis sin operon. J Bacteriol170:1046–1053
    [Google Scholar]
  13. Gibson T. J. 1984; Studies on the Epstein–Barr virus genome PhD thesis University of Cambridge;
    [Google Scholar]
  14. Grandvalet C., Mazodier P, de Crecy-Lagard V.. 1999; The ClpB ATPase of Streptomyces albus G belongs to the HspR heat shock regulon. Mol Microbiol31:521–532[CrossRef]
    [Google Scholar]
  15. Heimpel A. M. 1967; Critical review of Bacillus thuringiensis var. thuringiensis berliner and other crystalliferous bacteria. Annu Rev Entomol12:287–322[CrossRef]
    [Google Scholar]
  16. Hoch J. A. 1993a; Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu Rev Microbiol47:441–465[CrossRef]
    [Google Scholar]
  17. Hoch J. A. 1993b; spo genes, the phosphorelay, and the initiation of sporulation. In Bacillus subtilis and Other Gram-positive Bacteria pp747–755 Edited by Sonenshein A. L., Hoch J. A., Losick R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Kunst F., Msadek T., Rapoport G. 1994; Signal transduction network controlling degradative enzyme synthesis and competence in Bacillus subtilis . In Regulation of Bacterial Differentiation pp1–19 Edited by Piggot P.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Kuroda A., Sekiguchi J. 1993; High-level transcription of the major Bacillus subtilis autolysin operon depends on expression of the sigma D gene and is affected by a sin ( flaD ) mutation. J Bacteriol175:795–801
    [Google Scholar]
  20. Lecadet M. M., Blondel M. O., Ribier J. 1980; Generalized transduction in Bacillus thuringiensis var. berliner 1715, using bacteriophage CP54 Ber. J Gen Microbiol121:203–212
    [Google Scholar]
  21. Lereclus D., Arantes O., Chaufaux J., Lecadet M.-M. 1989; Transformation and expression of a cloned δ-endotoxin gene in Bacillus thuringiensis . FEMS Microbiol Lett60:211–218
    [Google Scholar]
  22. Lereclus D., Vallade M., Chaufaux J., Arantes O., Rambaud S. 1992; Expansion of insecticidal host range of Bacillus thuringiensis by in vivo genetic recombination. Bio/Technology10:418–421[CrossRef]
    [Google Scholar]
  23. Lereclus D., Agaisse H., Gominet M., Chaufaux J. 1995; Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spo0A mutant. Bio/Technology13:67–71[CrossRef]
    [Google Scholar]
  24. Lereclus D., Agaisse H., Gominet M., Salamitou S., Sanchis V. 1996; Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase. J Bacteriol178:2749–2756
    [Google Scholar]
  25. Lövgren A., Zhang M., Dalhammar G, Landén R., Engström A.. 1990; Molecular characterization of immune inhibitor A, a secreted virulence protease from Bacillus thuringiensis . Mol Microbiol4:2137–2146[CrossRef]
    [Google Scholar]
  26. Mandic-Mulec I., Gaur N., Bai U., Smith I. 1992; Sin, a stage-specific repressor of cellular differentiation. J Bacteriol174:3561–3569
    [Google Scholar]
  27. Mandic-Mulec I., Doukhan L., Smith I. 1995; The Bacillus subtilis SinR protein is a repressor of the key sporulation gene spo0A . J Bacteriol177:4619–4627
    [Google Scholar]
  28. Msadek T., Kunst F., Henner D., Klier A., Rapoport G., Dedonder R. 1990; Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis : expression of the regulatory genes and analysis of mutations in degS and degU . J Bacteriol172:824–834
    [Google Scholar]
  29. Msadek T., Dartois V., Kunst F., Herbaud M. L., Denizot F., Rapoport G. 1998; ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol27:899–914[CrossRef]
    [Google Scholar]
  30. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng10:1–6[CrossRef]
    [Google Scholar]
  31. Ogierman M. A., Fallarino A., Riess T., Williams S. G., Attridge S. R., Manning P. A. 1997; Characterization of the Vibrio cholerae El Tor lipase operon lipAB and a protease gene downstream of the hly region. J Bacteriol179:7072–7080
    [Google Scholar]
  32. Olmos J, de Anda R., Ferrari E., Bolivar F., Valle F. 1997; Effects of the sinR and degU32 (Hy) mutations on the regulation of the aprE gene in Bacillus subtilis . Mol Gen Genet253:562–567[CrossRef]
    [Google Scholar]
  33. Perego M., Hoch J. A. 1988; Sequence analysis and regulation of the hpr locus, a regulatory gene for protease production and sporulation in Bacillus subtilis . J Bacteriol170:2560–2567
    [Google Scholar]
  34. Robertson J. B., Gocht M., Marahiel M. A., Zuber P. 1989; AbrB, a regulator of gene expression in Bacillus , interacts with the transcription initiation regions of a sporulation gene and an antibiotic biosynthesis gene. Proc Natl Acad Sci USA86:8457–8461[CrossRef]
    [Google Scholar]
  35. Salamitou S., Ramisse F., Bourguet D., Gilois N., Gominet M., Hernandez E., Lereclus D, Brehélin M.. 2000; The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology146:2825–2832
    [Google Scholar]
  36. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA74:5463–5467[CrossRef]
    [Google Scholar]
  37. Satola S., Kirchman P. A., Moran C. J. 1991; Spo0A binds to a promoter used by sigma A RNA polymerase during sporulation in Bacillus subtilis. Proc Natl Acad Sci USA88:4533–4537[CrossRef]
    [Google Scholar]
  38. Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D. R., Dean D. H. 1998; Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev62:775–806
    [Google Scholar]
  39. Schnepf H. E., Witheley H. R. 1985; Protein toxins of Bacillus spp. In Molecular Biology of Microbial Differentiation pp209–216 Edited by Hoch J., Setlow P.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  40. Siden I., Dalhammar G., Telander B., Boman H. G., Somerville H. 1979; Virulence factors in Bacillus thuringiensis : purification and properties of a protein inhibitor of immunity in insects. J Gen Microbiol114:45–52[CrossRef]
    [Google Scholar]
  41. Smith I. 1993; Regulatory proteins that control late-growth development. . In Bacillus subtilis and Other Gram-positive Bacteria pp785–800 Edited by Sonenshein A. L., Hoch J. A., Losick R.. Washington DC: American Society for Microbiology;
    [Google Scholar]
  42. Steinmetz M., Richter R. 1994; Easy cloning of mini-Tn 10 insertions from the Bacillus subtilis chromosome. J Bacteriol176:1761–1763
    [Google Scholar]
  43. Strauch M. A. 1996; Dissection of the Bacillus subtilis spo0E binding site for the global regulator AbrB reveals smaller recognition elements. Mol Gen Genet250:742–749
    [Google Scholar]
  44. Strauch M. A., Hoch J. A. 1993; Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol Microbiol7:337–342[CrossRef]
    [Google Scholar]
  45. Strauch M. A., Perego M., Burbulys D., Hoch J. A. 1989a; The transition state transcription regulator AbrB of Bacillus subtilis is autoregulated during vegetative growth. Mol Microbiol3:1203–1209[CrossRef]
    [Google Scholar]
  46. Strauch M. A., Spiegelman G. B., Perego M., Johnson W. C., Burbulys D., Hoch J. A. 1989b; The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J8:1615–1621
    [Google Scholar]
  47. Trach K., Burbulys D., Strauch M. & 7 other authors. 1991; Control of the initiation of sporulation in Bacillus subtilis by a phosphorelay. Res Microbiol142:815–823[CrossRef]
    [Google Scholar]
  48. Villafane R., Bechhofer D. H., Narayanan C. S., Dubnau D. 1987; Replication control genes of plasmid pE194. J Bacteriol169:4822–4829
    [Google Scholar]
  49. Xu K., Strauch M. A. 1996; In vitro selection of optimal AbrB-binding sites: comparison to known in vivo sites indicates flexibility in AbrB binding and recognition of three-dimensional DNA structures. Mol Microbiol19:145–158[CrossRef]
    [Google Scholar]
  50. York K., Kenney T. J., Satola S., Moran C. J., Poth H., Youngman P. 1992; Spo0A controls the sigma A-dependent activation of Bacillus subtilis sporulation-specific transcription unit spoIIE . J Bacteriol174:2648–2658
    [Google Scholar]
  51. Zhang M.-Y, Lövgren A., Low M. G, Landén R.. 1993; Characterization of an avirulent pleitropic mutant of the insect pathogen Bacillus thuringiensis : reduced expression of flagellin and phospholipases. Infect Immun61:4947–4954
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-7-1805
Loading
/content/journal/micro/10.1099/00221287-147-7-1805
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error