1887

Abstract

Ohr (a protein involved in organic peroxide protection) and OsmC (an osmotically inducible protein of unknown function) are related proteins. Database searches and phylogenetic analyses reveal that Ohr and OsmC homologues cluster into two related subfamilies of proteins widely distributed in both Gram-negative and Gram-positive bacteria. To determine if these two subfamilies are functionally distinct, and in (a bacterium with one representative from each subfamily) were analysed. Only mutants are hypersensitive to organic peroxide, and this phenotype can be restored by complementation with but not . In addition, expression of was highly induced only by organic peroxides, and not by other oxidants or stresses. In contrast, was induced by ethanol and osmotic stress. A similar pattern of regulation was observed for Ohr and OsmC homologues in the Gram-positive bacterium , though uninduced expression was much higher and induction lower in this species. These data clearly support the conclusion that Ohr and OsmC define two functionally distinct subfamilies with distinct patterns of regulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-7-1775
2001-07-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/7/1471775a.html?itemId=/content/journal/micro/10.1099/00221287-147-7-1775&mimeType=html&fmt=ahah

References

  1. Alexeyev M. F. 1999; The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques 26:824–828
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Baillon M. L, van Vliet A. H., Ketley J. M., Constantinidou C., Penn C. W. 1999; An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni. J Bacteriol 1814798–4804
    [Google Scholar]
  4. Baker C. J., Orlandi E. W. 1995; Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321 [CrossRef]
    [Google Scholar]
  5. Bouvier J., Gordia S., Kampmann G., Lange R., Hengge-Aronis R., Gutierrez C. 1998; Interplay between global regulators of Escherichia coli: effect of RpoS, Lrp and H-NS on transcription of the gene osmC . Mol Microbiol 28:971–980 [CrossRef]
    [Google Scholar]
  6. Bsat N., Chen L., Helmann J. D. 1996; Mutation of the Bacillus subtilis alkyl hydroperoxide reductase ( ahpCF ) operon reveals compensatory interactions among hydrogen peroxide stress genes. J Bacteriol 178:6579–6586
    [Google Scholar]
  7. Chae H. Z., Robison K., Poole L. B., Church G., Storz G., Rhee S. G. 1994a; Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci USA 91:7017–7021 [CrossRef]
    [Google Scholar]
  8. Chae H. Z., Uhm T. B., Rhee S. G. 1994b; Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. Proc Natl Acad Sci USA 91:7022–7026 [CrossRef]
    [Google Scholar]
  9. Conter A., Gangneux C., Suzanne M., Gutierrez C. 2001; Survival of Escherichia coli during long-term starvation: effects of aeration, NaCl, and the rpoS and osmC gene products. Res Microbiol 152:17–26 [CrossRef]
    [Google Scholar]
  10. Fraser C. M., Gocayne J. D., White O. 25 other authors 1995; The minimal gene complement of Mycoplasma genitalium. Science 270:397–403
    [Google Scholar]
  11. Gonzalez-Flecha B., Demple B. 1997; Homeostatic regulation of intracellular hydrogen peroxide concentration in aerobically growing Escherichia coli. J Bacteriol 179:382–388
    [Google Scholar]
  12. Gordia S., Gutierrez C. 1996; Growth-phase-dependent expression of the osmotically inducible gene osmC of Escherichia coli K-12. Mol Microbiol 19:729–736 [CrossRef]
    [Google Scholar]
  13. Gutierrez C., Devedjian J. C. 1991; Osmotic induction of gene osmC expression in Escherichia coli K12. J Mol Biol 220:959–973 [CrossRef]
    [Google Scholar]
  14. Halliwell B., Gutteridge J. M. 1984; Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14
    [Google Scholar]
  15. Hassett D. J., Alsabbagh E., Parvatiyar K., Howell M. L., Wilmott R. W., Ochsner U. A. 2000; A protease-resistant catalase, KatA, released upon cell lysis during stationary phase is essential for aerobic survival of a Pseudomonas aeruginosa oxyR mutant at low cell densities. J Bacteriol 182:4557–4563 [CrossRef]
    [Google Scholar]
  16. Hillas P. J, del Alba F. S., Oyarzabal J., Wilks A., Ortiz De Montellano P. R. 2000; The AhpC and AhpD antioxidant defense system of Mycobacterium tuberculosis . J Biol Chem 275:18801–18809 [CrossRef]
    [Google Scholar]
  17. Koonin E. V., Arvind L., Galperin M. Y. 2000; A comparative-genomic view of the microbial stress response. In Bacterial Stress Response pp 417–444 Edited by Storz G., Hengge-Aronis R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M.II, Peterson K. M. 1994; pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–802
    [Google Scholar]
  19. Levine A., Tenhaken R., Dixon R., Lamb C. 1994; H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593 [CrossRef]
    [Google Scholar]
  20. Lim Y. S., Cha M. K., Kim H. K., Kim I. H. 1994; The thiol-specific antioxidant protein from human brain: gene cloning and analysis of conserved cysteine regions. Gene 140:279–284 [CrossRef]
    [Google Scholar]
  21. Loprasert S., Vattanaviboon P., Praituan W., Chamnongpol S., Mongkolsuk S. 1996; Regulation of the oxidative stress protective enzymes, catalase and superoxide dismutase, in Xanthomonas – a review. Gene 179:33–37 [CrossRef]
    [Google Scholar]
  22. Loprasert S., Atichartpongkun S., Whangsuk W., Mongkolsuk S. 1997; Isolation and analysis of the Xanthomonas alkyl hydroperoxide reductase gene and the peroxide sensor regulator genes ahpC and ahpF-oxyR-orfX . J Bacteriol 179:3944–3949
    [Google Scholar]
  23. Mongkolsuk S., Loprasert S., Whangsuk W., Fuangthong M., Atichartpongkun S. 1997; Characterization of transcription organization and analysis of unique expression patterns of an alkyl hydroperoxide reductase C gene ( ahpC ) and the peroxide regulator operon ahpF-oxyR-orfX from Xanthomonas campestris pv . phaseoli . J Bacteriol 179:3950–3955
    [Google Scholar]
  24. Mongkolsuk S., Praituan W., Loprasert S., Fuangthong M., Chamnongpol S. 1998a; Identification and characterization of a new organic hydroperoxide resistance ( ohr ) gene with a novel pattern of oxidative stress regulation from Xanthomonas campestris pv . phaseoli . J Bacteriol 180:2636–2643
    [Google Scholar]
  25. Mongkolsuk S., Sukchawalit R., Loprasert S., Praituan W., Upaichit A. 1998b; Construction and physiological analysis of a Xanthomonas mutant to examine the role of the oxyR gene in oxidant-induced protection against peroxide killing. J Bacteriol 180:3988–3991
    [Google Scholar]
  26. Niimura Y., Poole L. B., Massey V. 1995; Amphibacillus xylanus NADH oxidase and Salmonella typhimurium alkyl-hydroperoxide reductase flavoprotein components show extremely high scavenging activity for both alkyl hydroperoxide and hydrogen peroxide in the presence of S. typhimurium alkyl-hydroperoxide reductase 22-kDa protein component. J Biol Chem 270:25645–25650 [CrossRef]
    [Google Scholar]
  27. Ochsner U. A., Vasil M. L., Alsabbagh E., Parvatiyar K., Hassett D. J. 2000; Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB , and ahpC-ahpF . J Bacteriol 182:4533–4544 [CrossRef]
    [Google Scholar]
  28. Ochsner U. A., Hassett D. J., Vasil M. L. 2001; Genetic and physiological characterization of ohr , encoding a protein involved in organic hydroperoxide resistance in Pseudomonas aeruginosa . J Bacteriol 183:773–778 [CrossRef]
    [Google Scholar]
  29. Poole L. B. 1996; Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium . 2. Cystine disulfides involved in catalysis of peroxide reduction. Biochemistry 35:65–75 [CrossRef]
    [Google Scholar]
  30. Poole L. B., Ellis H. R. 1996; Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium . 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins. Biochemistry 35:56–64 [CrossRef]
    [Google Scholar]
  31. Stover C. K., Pham X. Q., Erwin A. L. 23 other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964 [CrossRef]
    [Google Scholar]
  32. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  33. Turner E., Hager L. J., Shapiro B. M. 1988; Ovothiol replaces glutathione peroxidase as a hydrogen peroxide scavenger in sea urchin eggs. Science 242:939–941 [CrossRef]
    [Google Scholar]
  34. Volker U., Andersen K. K., Antelmann H., Devine K. M., Hecker M. 1998; One of two osmC homologs in Bacillus subtilis is part of the sigma B-dependent general stress regulon. J Bacteriol 180:4212–4218
    [Google Scholar]
  35. White O., Eisen J. A., Heidelberg J. F. 29 other authors 1999; Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571–1577 [CrossRef]
    [Google Scholar]
/content/journal/micro/10.1099/00221287-147-7-1775
Loading
/content/journal/micro/10.1099/00221287-147-7-1775
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error