Expression control and specificity of the basic amino acid exporter LysE of Free

Abstract

LysE of belongs to a large new superfamily of translocators whose members are probably all involved in the export of small solutes. Here, the transcript initiation site of , and its divergently transcribed regulator gene, , are identified. Single-copy transcriptional fusions of with , and titration experiments, show that LysG is the positive regulator of expression enabling its up to 20-fold induction. This induction requires the presence of a coinducer, which is either intracellular L-lysine, or L-arginine. A competition experiment showed that LysE exports these two basic amino acids at comparable rates of about 075 nmol min (mg dry wt). Although L-histidine and L-citrulline also act as coinducers of expression, these two amino acids are not exported by LysE. As is evident from the analysis of a deletion mutant, the physiological role of the system is to prevent bacteriostasis due to elevated L-lysine or L-arginine concentrations that arise during growth in the presence of peptides or in mutants possessing a deregulated biosynthesis pathway. has additional export activities other than those of LysE for exporting L-histidine, L-citrulline and L-ornithine.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-7-1765
2001-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/7/1471765a.html?itemId=/content/journal/micro/10.1099/00221287-147-7-1765&mimeType=html&fmt=ahah

References

  1. Aleshin V. V., Zakataeva N. P., Livshits V. A. 1999; A new family of amino-acid-efflux proteins. Trends Biochem Sci 24:133–135 [CrossRef]
    [Google Scholar]
  2. Börmann E. Eikmanns B. J., Sahm H. 1992; Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase. Mol Microbiol 6:317–326 [CrossRef]
    [Google Scholar]
  3. Bröer S., Krämer R. 1991; Lysine excretion by Corynebacterium glutamicum . 2. Energetics and mechanism of the transport system. Eur J Biochem 202:137–143 [CrossRef]
    [Google Scholar]
  4. Bröer S. Eggeling L., Krämer R. 1993; Strains of Corynebacterium glutamicum with different lysine productivities may have different lysine excretion systems. Appl Environ Microbiol 59:316–321
    [Google Scholar]
  5. Cebolla A., Sousa C, de Lorenzo V. 1997; Effector specificity mutants of the transcriptional activator NahR of naphthalene degrading Pseudomonas define protein sites involved in binding of aromatic inducers. J Biol Chem 272:3986–3992 [CrossRef]
    [Google Scholar]
  6. Choi D., Ryu W., Chung B. H., Hwang S., Park Y. H. 1995; Effect of dilution rate on continuous production of l-ornithine by an arginine auxotrophic mutant. J Ferment Bioeng 80:97–100 [CrossRef]
    [Google Scholar]
  7. Cremer J., Eggeling L., Sahm H. 1991; Control of the lysine biosynthetic sequence in Corynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes. Appl Environ Microbiol 57:1746–1752
    [Google Scholar]
  8. Daßler T., Maier T., Winterhalter C., Böck A. 2000; Identification of a major facilitator protein from Escherichia coli involved in efflux of metabolites of the cysteine pathway. Mol Microbiol 36:1101–1112 [CrossRef]
    [Google Scholar]
  9. Dover N., Higgins C. F., Carmel O., Pinner A. R., Padan E. 1997; Na+-induced transcription of nhaA , which encodes an Na+/H+ antiporter in Escherichia coli , is positively regulated by nhaR and affected by hns . J Bacteriol 178:6508–6517
    [Google Scholar]
  10. Eggeling L., Oberle S., Sahm H. 1996; Improved l-lysine yield with Corynebacterium glutamicum : use of dapA resulting in increased flux combined with growth limitation. Appl Microbiol Biotechnol 49:24–30
    [Google Scholar]
  11. Eikmanns B. J., Follettie M. T., Griot M. U., Sinskey A. J. 1989; The phospho enol pyruvate carboxylase gene of Corynebacterium glutamicum : molecular cloning, nucleotide sequence, and expression. Mol Gen Genet 218:330–339 [CrossRef]
    [Google Scholar]
  12. Eikmanns B., Kleinertz E., Liebl W., Sahm H. 1991; A family of Corynebacterium glutamicum / Escherichia coli shuttle vectors for gene cloning, controlled gene expression, and promoter probing. Gene 102:93–98 [CrossRef]
    [Google Scholar]
  13. Erdmann A., Weil B., Krämer R. 1993; Lysine secretion by wild-type Corynebacterium glutamicum triggered by dipeptide uptake. J Gen Microbiol 139:3115–3122 [CrossRef]
    [Google Scholar]
  14. Grant S. G. N., Jessee J., Bloom F. R., Hanahan D. 1990; Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 87:4645–4649 [CrossRef]
    [Google Scholar]
  15. Harel-Bronstein M., Dibrov P., Olami Y., Pinner E., Schuldiner S., Padan E. 1995; MH1, a second-site revertant of an Escherichia coli mutant lacking Na+/H+ antiporters regains Na+ resistance and a capacity to excrete Na+ in a ΔμH+-independent fashion. J Biol Chem 270:3816–3822 [CrossRef]
    [Google Scholar]
  16. Hillenga D. J., Versantvoort H. J. M., Driessen A. J. M., Konings W. N. 1996; Basic amino acid transport in plasma membrane vesicles of Penicillium chrysogenum . J Bacteriol 178:3991–3995
    [Google Scholar]
  17. Keilhauer C., Eggeling L., Sahm H. 1993; Isoleucine synthesis in Corynebacterium glutamicum : molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175:5595–5603
    [Google Scholar]
  18. Klingenberg M., Pfaff E. 1977; Means of terminating reactions. Methods Enzymol 10:680–684
    [Google Scholar]
  19. Krämer R. 1994; Secretion of amino acids by bacteria: physiology and mechanism. FEMS Microbiol Rev 13:75–79 [CrossRef]
    [Google Scholar]
  20. Leuchtenberger W. 1996; Amino acids – technical production and use. In Products of Primary Metabolism: Biotechnology pp 455–502 Edited by Rehm H. J., Reeds G. Weinheim: VHC;
    [Google Scholar]
  21. Liebl W., Bayerl A., Stillner U., Schleifer K. H. 1989; High efficiency electroporation of intact Corynebacterium glutamicum cells. FEMS Microbiol Lett 65:299–304 [CrossRef]
    [Google Scholar]
  22. McFall S. M., Chugani S. A., Chakrabarty A. M. 1998; Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme. Mol Microbiol 223:257–267
    [Google Scholar]
  23. Marcel T., Archer J. A. C., Mengin-Lecreulx D., Sinskey A. J. 1990; Nucleotide sequence and organization of the upstream region of the Corynebacterium glutamicum lysA gene. Mol Microbiol 4:1819–1830 [CrossRef]
    [Google Scholar]
  24. Morbach S., Junger C., Sahm H., Eggeling L. 2000; Attenuation control of ilvBNC in Corynebacterium glutamicum : evidence of leader peptide formation without the presence of a ribosome binding site. Biosci Biotechnol Biochem 90:501–507
    [Google Scholar]
  25. Oguiza J. A., Malumbres M., Eriani G., Pisabarro A., Mateos L. M., Martin F., Martin J. F. 1993; A gene encoding arginyl-tRNA synthetase is located in the upstream region of the lysA gene in Brevibacterium lactofermentum : regulation of argS–lysA cluster expression by arginine. J Bacteriol 175:7356–7362
    [Google Scholar]
  26. Palmieri L., Berns D., Krämer R., Eikmanns M. 1996; Threonine diffusion and threonine transport in Corynebacterium glutamicum and their role in threonine production. Arch Microbiol 165:48–54 [CrossRef]
    [Google Scholar]
  27. Payne J. W., Smith M. W. 1994; Peptide transport by microorganisms. Adv Microb Physiol 36:2–80
    [Google Scholar]
  28. Peters-Wendisch P. G., Kreutzer C., Kalinowski J., Eikmanns B. J, Pátek M., Sahm H. 1998; Pyruvate carboxylase from Corynebacterium glutamicum : characterization, expression and inactivation of the pyc gene. Microbiology 144:915–927 [CrossRef]
    [Google Scholar]
  29. Schäfer A. Kalinowski J., Simon R., Seep-Feldhaus A., Pühler A. 1990; High-frequency conjugal plasmid transfer from Gram-negative Escherichia coli to various Gram-positive coryneform bacteria. J Bacteriol 172:1663–1666
    [Google Scholar]
  30. Schäfer A., Tauch A., Jäger W., Kalinowski J. Thierbach G., Pühler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73 [CrossRef]
    [Google Scholar]
  31. Schell M. A. 1993; Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626 [CrossRef]
    [Google Scholar]
  32. Schrumpf B., Eggeling L., Sahm H. 1992; Isolation and prominent characteristics of an l-lysine hyperproducing strain of Corynebacterium glutamicum . Appl Microbiol Biotechnol 37:566–571
    [Google Scholar]
  33. Seep-Feldhaus A. H., Kalinowski J., Pühler A. 1991; Molecular analysis of the Corynebacterium glutamicum lysI gene involved in lysine uptake. Mol Microbiol 5:2995–3005 [CrossRef]
    [Google Scholar]
  34. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 11:784–791
    [Google Scholar]
  35. Strohl W. R. 1992; Compilation and analysis of DNA sequences associated with apparent streptomyces promoters. Nucleic Acids Res 20:961–974 [CrossRef]
    [Google Scholar]
  36. Vašicová P., Abrhámová Z., Nešvera J., Pátek M. Sahm H., Eikmanns B. 1998; Integrative and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum . Biotechnol Tech 12:743–746 [CrossRef]
    [Google Scholar]
  37. Vrljić M. Eggeling L., Sahm H. 1995; Unbalance of l-lysine flux in Corynebacterium glutamicum and its use for the isolation of excretion defective mutants. J Bacteriol 177:4021–4027
    [Google Scholar]
  38. Vrljić M. Sahm H., Eggeling L. 1996; A new type of transporter with a new type of cellular function: l-lysine export from Corynebacterium glutamicum . Mol Microbiol 22:815–826 [CrossRef]
    [Google Scholar]
  39. Vrljić M. Garg J., Bellmann A., Wachi S., Freudl R., Malecki M. J., Sahm H., Kozina V. J., Eggeling L., Saier M. H. Jr 1999; The LysE superfamily: topology of the lysine exporter LysE of Corynebacterium glutamicum , a paradigm for a novel superfamily of transmembrane solute translocators. J Mol Microbiol Biotechnol 1:327–336
    [Google Scholar]
  40. Wendisch V. 1997 Physiological investigations and studies by NMR spectroscopy on the central metabolism of different recombinant Corynebacterium glutamicum strains PhD thesis University of Düsseldorf;
    [Google Scholar]
  41. von Wilken-Bergmann B. Tils D., Sartorius J., Auerswald E. A., Schröder W., Müller-Hill B. 1986; A synthetic operon containing 14 bovine pancreatic trypsin inhibitor genes is expressed in E. coli. EMBO J 5:3219–3225
    [Google Scholar]
  42. Wissenbach U., Six S., Bongaerts J., Ternes D., Steinwachs S., Unden G. 1995; A third periplasmic transport system for l-arginine in Escherichia coli : molecular characterization of the artPIQMJ genes, arginine binding and transport. Mol Microbiol 17:675–686 [CrossRef]
    [Google Scholar]
  43. Zakataeva N. P., Aleshin V. V., Tokmakova I. L., Troshin P. V., Livshits V. A. 1999; The novel transmembrane Escherichia coli proteins involved in the amino acid efflux. FEBS Lett 452:228–232 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-7-1765
Loading
/content/journal/micro/10.1099/00221287-147-7-1765
Loading

Data & Media loading...

Most cited Most Cited RSS feed