1887

Abstract

LysE of belongs to a large new superfamily of translocators whose members are probably all involved in the export of small solutes. Here, the transcript initiation site of , and its divergently transcribed regulator gene, , are identified. Single-copy transcriptional fusions of with , and titration experiments, show that LysG is the positive regulator of expression enabling its up to 20-fold induction. This induction requires the presence of a coinducer, which is either intracellular L-lysine, or L-arginine. A competition experiment showed that LysE exports these two basic amino acids at comparable rates of about 075 nmol min (mg dry wt). Although L-histidine and L-citrulline also act as coinducers of expression, these two amino acids are not exported by LysE. As is evident from the analysis of a deletion mutant, the physiological role of the system is to prevent bacteriostasis due to elevated L-lysine or L-arginine concentrations that arise during growth in the presence of peptides or in mutants possessing a deregulated biosynthesis pathway. has additional export activities other than those of LysE for exporting L-histidine, L-citrulline and L-ornithine.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-7-1765
2001-07-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/7/1471765a.html?itemId=/content/journal/micro/10.1099/00221287-147-7-1765&mimeType=html&fmt=ahah

References

  1. Aleshin, V. V., Zakataeva, N. P. & Livshits, V. A. ( 1999; ). A new family of amino-acid-efflux proteins. Trends Biochem Sci 24, 133-135.[CrossRef]
    [Google Scholar]
  2. Börmann, E., Eikmanns, B. J. & Sahm, H. ( 1992; ). Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase. Mol Microbiol 6, 317-326.[CrossRef]
    [Google Scholar]
  3. Bröer, S. & Krämer, R. ( 1991; ). Lysine excretion by Corynebacterium glutamicum. 2. Energetics and mechanism of the transport system. Eur J Biochem 202, 137-143.[CrossRef]
    [Google Scholar]
  4. Bröer, S., Eggeling, L. & Krämer, R. ( 1993; ). Strains of Corynebacterium glutamicum with different lysine productivities may have different lysine excretion systems. Appl Environ Microbiol 59, 316-321.
    [Google Scholar]
  5. Cebolla, A., Sousa, C. & de Lorenzo, V. ( 1997; ). Effector specificity mutants of the transcriptional activator NahR of naphthalene degrading Pseudomonas define protein sites involved in binding of aromatic inducers. J Biol Chem 272, 3986-3992.[CrossRef]
    [Google Scholar]
  6. Choi, D., Ryu, W., Chung, B. H., Hwang, S. & Park, Y. H. ( 1995; ). Effect of dilution rate on continuous production of l-ornithine by an arginine auxotrophic mutant. J Ferment Bioeng 80, 97-100.[CrossRef]
    [Google Scholar]
  7. Cremer, J., Eggeling, L. & Sahm, H. ( 1991; ). Control of the lysine biosynthetic sequence in Corynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes. Appl Environ Microbiol 57, 1746-1752.
    [Google Scholar]
  8. Daßler, T., Maier, T., Winterhalter, C. & Böck, A. ( 2000; ). Identification of a major facilitator protein from Escherichia coli involved in efflux of metabolites of the cysteine pathway. Mol Microbiol 36, 1101-1112.[CrossRef]
    [Google Scholar]
  9. Dover, N., Higgins, C. F., Carmel, O., Pinner, A. R. & Padan, E. ( 1997; ). Na+-induced transcription of nhaA, which encodes an Na+/H+ antiporter in Escherichia coli, is positively regulated by nhaR and affected by hns. J Bacteriol 178, 6508-6517.
    [Google Scholar]
  10. Eggeling, L., Oberle, S. & Sahm, H. ( 1996; ). Improved l-lysine yield with Corynebacterium glutamicum: use of dapA resulting in increased flux combined with growth limitation. Appl Microbiol Biotechnol 49, 24-30.
    [Google Scholar]
  11. Eikmanns, B. J., Follettie, M. T., Griot, M. U. & Sinskey, A. J. ( 1989; ). The phosphoenolpyruvate carboxylase gene of Corynebacterium glutamicum: molecular cloning, nucleotide sequence, and expression. Mol Gen Genet 218, 330-339.[CrossRef]
    [Google Scholar]
  12. Eikmanns, B., Kleinertz, E., Liebl, W. & Sahm, H. ( 1991; ). A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for gene cloning, controlled gene expression, and promoter probing. Gene 102, 93-98.[CrossRef]
    [Google Scholar]
  13. Erdmann, A., Weil, B. & Krämer, R. ( 1993; ). Lysine secretion by wild-type Corynebacterium glutamicum triggered by dipeptide uptake. J Gen Microbiol 139, 3115-3122.[CrossRef]
    [Google Scholar]
  14. Grant, S. G. N., Jessee, J., Bloom, F. R. & Hanahan, D. ( 1990; ). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 87, 4645-4649.[CrossRef]
    [Google Scholar]
  15. Harel-Bronstein, M., Dibrov, P., Olami, Y., Pinner, E., Schuldiner, S. & Padan, E. ( 1995; ). MH1, a second-site revertant of an Escherichia coli mutant lacking Na+/H+ antiporters regains Na+ resistance and a capacity to excrete Na+ in a ΔμH+-independent fashion. J Biol Chem 270, 3816-3822.[CrossRef]
    [Google Scholar]
  16. Hillenga, D. J., Versantvoort, H. J. M., Driessen, A. J. M. & Konings, W. N. ( 1996; ). Basic amino acid transport in plasma membrane vesicles of Penicillium chrysogenum. J Bacteriol 178, 3991-3995.
    [Google Scholar]
  17. Keilhauer, C., Eggeling, L. & Sahm, H. ( 1993; ). Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175, 5595-5603.
    [Google Scholar]
  18. Klingenberg, M. & Pfaff, E. ( 1977; ). Means of terminating reactions. Methods Enzymol 10, 680-684.
    [Google Scholar]
  19. Krämer, R. ( 1994; ). Secretion of amino acids by bacteria: physiology and mechanism. FEMS Microbiol Rev 13, 75-79.[CrossRef]
    [Google Scholar]
  20. Leuchtenberger, W. ( 1996; ). Amino acids – technical production and use. In Products of Primary Metabolism: Biotechnology , pp. 455-502. Edited by H. J. Rehm & G. Reeds. Weinheim:VHC.
  21. Liebl, W., Bayerl, A., Stillner, U. & Schleifer, K. H. ( 1989; ). High efficiency electroporation of intact Corynebacterium glutamicum cells. FEMS Microbiol Lett 65, 299-304.[CrossRef]
    [Google Scholar]
  22. McFall, S. M., Chugani, S. A. & Chakrabarty, A. M. ( 1998; ). Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme. Mol Microbiol 223, 257-267.
    [Google Scholar]
  23. Marcel, T., Archer, J. A. C., Mengin-Lecreulx, D. & Sinskey, A. J. ( 1990; ). Nucleotide sequence and organization of the upstream region of the Corynebacterium glutamicum lysA gene. Mol Microbiol 4, 1819-1830.[CrossRef]
    [Google Scholar]
  24. Morbach, S., Junger, C., Sahm, H. & Eggeling, L. ( 2000; ). Attenuation control of ilvBNC in Corynebacterium glutamicum: evidence of leader peptide formation without the presence of a ribosome binding site. Biosci Biotechnol Biochem 90, 501-507.
    [Google Scholar]
  25. Oguiza, J. A., Malumbres, M., Eriani, G., Pisabarro, A., Mateos, L. M., Martin, F. & Martin, J. F. ( 1993; ). A gene encoding arginyl-tRNA synthetase is located in the upstream region of the lysA gene in Brevibacterium lactofermentum: regulation of argS–lysA cluster expression by arginine. J Bacteriol 175, 7356-7362.
    [Google Scholar]
  26. Palmieri, L., Berns, D., Krämer, R. & Eikmanns, M. ( 1996; ). Threonine diffusion and threonine transport in Corynebacterium glutamicum and their role in threonine production. Arch Microbiol 165, 48-54.[CrossRef]
    [Google Scholar]
  27. Payne, J. W. & Smith, M. W. ( 1994; ). Peptide transport by microorganisms. Adv Microb Physiol 36, 2-80.
    [Google Scholar]
  28. Peters-Wendisch, P. G., Kreutzer, C., Kalinowski, J., Pátek, M., Sahm, H. & Eikmanns, B. J. ( 1998; ). Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology 144, 915-927.[CrossRef]
    [Google Scholar]
  29. Schäfer, A., Kalinowski, J., Simon, R., Seep-Feldhaus, A. & Pühler, A. ( 1990; ). High-frequency conjugal plasmid transfer from Gram-negative Escherichia coli to various Gram-positive coryneform bacteria. J Bacteriol 172, 1663-1666.
    [Google Scholar]
  30. Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G. & Pühler, A. ( 1994; ). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69-73.[CrossRef]
    [Google Scholar]
  31. Schell, M. A. ( 1993; ). Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47, 597-626.[CrossRef]
    [Google Scholar]
  32. Schrumpf, B., Eggeling, L. & Sahm, H. ( 1992; ). Isolation and prominent characteristics of an l-lysine hyperproducing strain of Corynebacterium glutamicum. Appl Microbiol Biotechnol 37, 566-571.
    [Google Scholar]
  33. Seep-Feldhaus, A. H., Kalinowski, J. & Pühler, A. ( 1991; ). Molecular analysis of the Corynebacterium glutamicum lysI gene involved in lysine uptake. Mol Microbiol 5, 2995-3005.[CrossRef]
    [Google Scholar]
  34. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 11, 784-791.
    [Google Scholar]
  35. Strohl, W. R. ( 1992; ). Compilation and analysis of DNA sequences associated with apparent streptomyces promoters. Nucleic Acids Res 20, 961-974.[CrossRef]
    [Google Scholar]
  36. Vašicová, P., Abrhámová, Z., Nešvera, J., Pátek , M., Sahm, H. & Eikmanns, B. ( 1998; ). Integrative and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum. Biotechnol Tech 12, 743-746.[CrossRef]
    [Google Scholar]
  37. Vrljić, M., Eggeling, L. & Sahm, H. ( 1995; ). Unbalance of l-lysine flux in Corynebacterium glutamicum and its use for the isolation of excretion defective mutants. J Bacteriol 177, 4021-4027.
    [Google Scholar]
  38. Vrljić, M., Sahm, H. & Eggeling, L. ( 1996; ). A new type of transporter with a new type of cellular function: l-lysine export from Corynebacterium glutamicum. Mol Microbiol 22, 815-826.[CrossRef]
    [Google Scholar]
  39. Vrljić, M., Garg, J., Bellmann, A., Wachi, S., Freudl, R., Malecki, M. J., Sahm, H., Kozina, V. J., Eggeling, L. & Saier, M. H.Jr ( 1999; ). The LysE superfamily: topology of the lysine exporter LysE of Corynebacterium glutamicum, a paradigm for a novel superfamily of transmembrane solute translocators. J Mol Microbiol Biotechnol 1, 327-336.
    [Google Scholar]
  40. Wendisch, V. (1997). Physiological investigations and studies by NMR spectroscopy on the central metabolism of different recombinant Corynebacterium glutamicum strains. PhD thesis, University of Düsseldorf.
  41. von Wilken-Bergmann, B., Tils, D., Sartorius, J., Auerswald, E. A., Schröder, W. & Müller-Hill, B. ( 1986; ). A synthetic operon containing 14 bovine pancreatic trypsin inhibitor genes is expressed in E. coli. EMBO J 5, 3219-3225.
    [Google Scholar]
  42. Wissenbach, U., Six, S., Bongaerts, J., Ternes, D., Steinwachs, S. & Unden, G. ( 1995; ). A third periplasmic transport system for l-arginine in Escherichia coli: molecular characterization of the artPIQMJ genes, arginine binding and transport. Mol Microbiol 17, 675-686.[CrossRef]
    [Google Scholar]
  43. Zakataeva, N. P., Aleshin, V. V., Tokmakova, I. L., Troshin, P. V. & Livshits, V. A. ( 1999; ). The novel transmembrane Escherichia coli proteins involved in the amino acid efflux. FEBS Lett 452, 228-232.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-7-1765
Loading
/content/journal/micro/10.1099/00221287-147-7-1765
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error