1887

Abstract

Four laccase isozyme genes, Psc , , and have been cloned from the edible mushroom, . The genes display a high degree of homology with other basidiomycete laccases (55–99%) at the amino acid level. Of the laccase genes isolated, Psc and displayed the highest degree of similarity (85% at the amino acid level), while Psc showed the highest degree of divergence, exhibiting only 52–57% amino acid similarity to the other laccase gene sequences. Laccase activity in is affected by nutrient nitrogen and carbon, and by the addition of copper and manganese to the growth medium. In addition, 2,5-xylidine, ferulic acid, veratric acid and 1-hydroxybenzotriazole induced laccase activity in the fungus. Induction of individual laccase isozyme genes by carbon, nitrogen, copper, manganese and the two aromatic compounds, 2,5-xylidine and ferulic acid, occured at the level of gene transcription. While Psc transcript levels appeared to be constitutively expressed, transcript levels for the other laccase isozyme genes, , and , were differentially regulated under the conditions tested.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-7-1755
2001-07-01
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/7/1471755a.html?itemId=/content/journal/micro/10.1099/00221287-147-7-1755&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  2. Aramayo R., Timberlake W. E. 1990; Sequence and molecular structure of the Aspergillus nidulans yA (laccase I) gene. Nucleic Acids Res18:3415[CrossRef]
    [Google Scholar]
  3. Archibald F., Roy B. 1992; Production of manganese chelates from the lignin-degrading fungus Trametes versicolor . Appl Environ Microbiol58:1496–1499
    [Google Scholar]
  4. Balance D. J. 1986; Sequences important for gene expression in filamentous fungi. Yeast2:229–236[CrossRef]
    [Google Scholar]
  5. Cervantes C., Gutiérrez-Corona F. 1994; Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev14:121–138
    [Google Scholar]
  6. Choi G. H., Larson T. G., Nuss D. L. 1992; Molecular analysis of the laccase gene from the chestnut blight fungus and selective suppression of its expression in an isogenic hypovirulent strain. Mol Plant–Microbe Interact5:119–128[CrossRef]
    [Google Scholar]
  7. Coll P. M., Tabernero C., Santamarı́a R., Pérez P. 1993; Characterization and structural analysis of the laccase I gene from the newly isolated ligninolytic basidiomycete PM1 (CECT 2971). Appl Environ Microbiol59:4129–4135
    [Google Scholar]
  8. Collins P. J., Dobson A. D. W. 1997; Regulation of laccase gene transcription in Trametes versicolor . Appl Environ Microbiol63:3444–3450
    [Google Scholar]
  9. De Vries O. M. H., Kooistra W. H. C. F., Wessels J. G. H. 1986; Formation of an extracellular laccase by a Schizophyllum commune dikaryon. J Gen Microbiol132:2817–2826
    [Google Scholar]
  10. Eggert C., Temp U., Eriksson K. E. L. 1997; Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus . FEBS Lett407:89–92[CrossRef]
    [Google Scholar]
  11. Eggert C., LaFayette P. R., Temp U., Eriksson K. E. L., Dean J. F. D. 1998; Molecular analysis of a laccase gene from the white-rot fungus Pycnoporus cinnabarinus . Appl Environ Microbiol64:1766–1772
    [Google Scholar]
  12. Feng B., Marzluf G. A. 1998; Interaction between major nitrogen regulatory protein NIT2 and pathway-specific regulatory factor NIT4 is required for the synergistic activation of gene expression in Neurospora crassa . Mol Cell Biol18:3983–3990
    [Google Scholar]
  13. Fernández-Larrea J., Stahl U. 1996; Isolation and characterization of a laccase gene from Podospora anserina. Mol Gen Genet252:539–551
    [Google Scholar]
  14. Fu S. Y., Yu H., Buswell J. A. 1997; Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Pleurotus sajor-caju . FEBS Lett147:133–137
    [Google Scholar]
  15. Germann U. A., Hunziker P. E., Lerch K, Müller G.. 1998; Characterization of two allelic forms of Neurospora crassa laccase. J Biol Chem263:885–896
    [Google Scholar]
  16. Giardina P., Cannio R., Martirani L., Marzullo L., Palmieri G., Sannia G. 1995; Cloning and sequencing of a laccase gene from the lignin-degrading basidiomycete Pleurotus ostreatus. Appl Environ Microbiol61:2408–2413
    [Google Scholar]
  17. Giardina P., Palmieri G., Scaloni A., Fontanello B., Faraco V., Cennamo G., Sannia G. 1999; Protein and gene structure of a blue laccase from Pleurotus ostreatus . Biochem J34:655–663
    [Google Scholar]
  18. Gold M. H., Alic M. 1993; Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium . Microbiol Rev57:605–622
    [Google Scholar]
  19. Gralla E. B., Thiele D. J., Silar P., Valentine J. S. 1991; ACE1, a copper-dependent transcription factor, activates expression of the yeast copper, zinc superoxide dismutase gene. Proc Natl Acad Sci USA88:8558–8562[CrossRef]
    [Google Scholar]
  20. Gromroff E. D., Treier U., Beck C. F. 1989; Three light-inducible heat shock genes of Chlamydomonas reinhardtii . Mol Cell Biol9:3911–3918
    [Google Scholar]
  21. Hatakka A. 1994; Lignin-modifying enzymes from selected white-rot fungi, production and role in lignin degradation. FEMS Microbiol Rev13:125–135[CrossRef]
    [Google Scholar]
  22. Huber M., Lerch K. 1987; The influence of copper on the induction of tyrosinase and laccase in Neurospora crassa . FEBS Lett219:335–338[CrossRef]
    [Google Scholar]
  23. Hunolstein C. V., Valenti P., Visca P., Antonini G., Nicolini L., Orsi N. 1986; Production of laccases A and B by a mutant strain of Trametes versicolor . J Gen Appl Microbiol32:185–191[CrossRef]
    [Google Scholar]
  24. Jarai G., Truong H. N., Daniel-Vedele F., Marzluf G. A. 1992; NIT2, the nitrogen regulatory protein of Neurospora crassa , binds upstream of nia , the tomato nitrate reductase gene, in vitro. Curr Genet21:37–41[CrossRef]
    [Google Scholar]
  25. Jönnson L., Sjöström K., Hoggström I., Nyman P. O. 1995; Characterization of a laccase gene from the white-rot fungus Trametes versicolor and structural features of basidiomycete laccases. Biochim Biophys Acta1251:210–215[CrossRef]
    [Google Scholar]
  26. Jönnson L.. Saloheimo M., Penttil M. 1997; Laccase from the white-rot fungus Trametes versicolor : cDNA cloning of lcc1 and expression in Pichia pastoris . Curr Genet32:425–430[CrossRef]
    [Google Scholar]
  27. Kojima Y., Tsukada Y., Kawai Y., Tsukamoto A., Sugiura J., Sakaino M., Kita Y. 1990; Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus . J Biol Chem265:15224–15230
    [Google Scholar]
  28. Lante A., Crapisi A., Pasini G., Zamorani A., Spettoli P. 1992; Immobilized laccase for must and wine processing. Enzyme Eng11:558–562
    [Google Scholar]
  29. Leatham G., Stahman M. A. 1981; Studies on the laccase of Lentinus edodes : specificity, localization and association with the development of fruiting bodies. J Gen Microbiol125:147–157
    [Google Scholar]
  30. Mansur M., Brizuela M. A, Suárez T., Fernández-Larrea J., González A. E. 1997; Identification of a laccase gene family in the new lignin degrading basidiomycete CECT 20197. Appl Environ Microbiol63:2637–2646
    [Google Scholar]
  31. Mansur M., Suárez T., González A. E. 1998; Differential expression in the laccase gene family from basidiomycete I-62 (CECT 20197. Appl Environ Microbiol64:771–774
    [Google Scholar]
  32. Mayer A. M. 1987; Polyphenol oxidases in plants – recent progress. Phytochemistry26:11–20
    [Google Scholar]
  33. Muñoz C., Guillén F.. Martı́nez A. T., Martı́nez M. J. 1997; Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii . Curr Microbiol34:1–5[CrossRef]
    [Google Scholar]
  34. Palmieri G., Giardina P., Bianco C., Fontannella B., Sannia G. 2000; Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus . Appl Environ Microbiol66:920–924[CrossRef]
    [Google Scholar]
  35. Piatak M., Lifson J. D, Luk K. C. Jr, Williams B.. 1993; Quantitative competitive polymerase chain reaction for accurate quantitation of HIV DNA and RNA species. BioTechniques14:70–81
    [Google Scholar]
  36. Reinhammer B. R. M. 1984; Laccase. In Copper Proteins and Copper Enzymes pp1–35 Edited by Lontie R.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  37. Rushmore T. H., Morton M. R., Pickett C. B. 1991; The antioxidant response element: activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem266:11632–11639
    [Google Scholar]
  38. Saloheimo M., Niku-Paavola M. L., Knowles J. K. C. 1991; Isolation and structural analysis of the laccase gene from the lignin-degrading fungus Phlebia radiata . J Gen Microbiol137:1537–1544[CrossRef]
    [Google Scholar]
  39. Sanger F., Nicklen S., Coulson A. R. 1997; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA74:5463–5467
    [Google Scholar]
  40. Scheel T., Hofer M., Ludwig S., Holker U. 2000; Differential expression of manganese peroxidase and laccase in white-rot fungi in the presence of manganese or aromatic compounds. Appl Microbiol Biotechnol54:686–691[CrossRef]
    [Google Scholar]
  41. Siebert P. D., Larrick J. W. 1992; Competitive PCR. Nature359:557–558[CrossRef]
    [Google Scholar]
  42. Smith N., Shnyreva A., Wood D. A., Thurston C. S. 1998; Tandem organization and highly disparate expression of the two laccase genes lcc1 and lcc2 in the cultivated mushroom Agaricus bisporus . Microbiology144:1063–1069[CrossRef]
    [Google Scholar]
  43. Thurston F. 1994; The structure and function of fungal laccases. Microbiology140:19–26[CrossRef]
    [Google Scholar]
  44. Wahleithner J. A., Xu F., Brown K. M., Brown S. H., Golightly E. J., Halkier T., Kauppinen S., Pederson A., Schneider P. 1996; The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani . Curr Genet29:395–403[CrossRef]
    [Google Scholar]
  45. Wolfenden B. S., Willson R. L. 1982; Radical-cations as reference chromogens in kinetic studies of one-electron transfer reactions. J Chem Soc Perkin TransII:805–812
    [Google Scholar]
  46. Wood D. A. 1980; Inactivation of extracellular laccase during fruiting of Agaricus bisporus. J Gen Microbiol 117:339–345
    [Google Scholar]
  47. Yaver D. S., Golightly E. J. 1996; Cloning and characterization of three laccase genes from the white rot basidiomycete Trametes villosa : genomic organization of the laccase gene family. Gene181:95–102[CrossRef]
    [Google Scholar]
  48. Yaver D. S., Xu F., Golightly E. J. & 7 other authors. 1996; Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microbiol62:834–841
    [Google Scholar]
  49. Yoshida H. 1883; Chemistry of Lacquer (Urushi), part 1. J Chem Soc43:472–486[CrossRef]
    [Google Scholar]
  50. Zhao J., Kwan H. S. 1999; Characterization, molecular cloning, and differential expression analysis of laccase genes from the edible mushroom Lentinula edodes . Appl Environ Microbiol65:4908–4911
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-7-1755
Loading
/content/journal/micro/10.1099/00221287-147-7-1755
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error