1887

Abstract

The fungal strain 103 produces a naturally glycosylated Cu/Zn SOD. To improve its yield, the effect of an increased concentration of dissolved oxygen (DO) on growth and enzyme biosynthesis by the producer, cultivated in a 3 l bioreactor, was examined. Exposure to a 20% DO level caused a 17-fold increase of SOD activity compared to the DO-uncontrolled culture. Maximum enzyme productivity of SOD was approximately 300×10 U (kg wet biomass). The novel enzyme was purified to electrophoretic homogeneity. The presence of Cu and Zn were confirmed by atomic absorption spectrometry. The molecular mass of Cu/Zn SOD was calculated to be 31870 Da for the whole molecule and 15936 Da for the structural subunits. The N-terminal sequence revealed a high degree of structural homology with Cu/Zn SOD from other prokaryotic and eukaryotic sources. Cu/Zn SOD was used in an model for the demonstration of its protective effect against myeloid Graffi tumour in hamsters. Comparative studies revealed that the enzyme (i) elongated the latent time for tumour appearance, (ii) inhibited tumour growth in the early stage of tumour progression (73–75% at day 10) and (iii) increased the mean survival time of Graffi-tumour-bearing hamsters. Moreover, the fungal Cu/Zn SOD exhibited a strong protective effect on experimental influenza virus infection in mice. The survival rate increased markedly, the time of survival rose by 52 d and the protective index reached 86%. The SOD protected mice from mortality more efficiently compared to the selective antiviral drug ribavirin and to commercial bovine SOD. In conclusion, our results suggest that appropriate use of the novel fungal SOD, applied as such or in combination with selective inhibitors, could outline a promising strategy for the treatment of myeloid Graffi tumour and influenza virus infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-6-1641
2001-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/6/1471641a.html?itemId=/content/journal/micro/10.1099/00221287-147-6-1641&mimeType=html&fmt=ahah

References

  1. Akaike T., Noguchi T., Ijuri S., Setoguchi K., Suga M., Zheng Y., Dietzschold B., Maeda H. 1996; Pathogenesis of influenza virus-induced pneumonia: Involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci USA 93:2448–2453 [CrossRef]
    [Google Scholar]
  2. Ambrosone C. B., Freudenheim J. L., Thomson P. A. 7 other authors 1999; Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res 59:602–606
    [Google Scholar]
  3. Angelova M., Genova L., Slokoska L., Pashova S. 1995; Effect of glucose on the superoxide dismutase production in fungal strain Humicola lutea. . Can J Microbiol 41:978–983 [CrossRef]
    [Google Scholar]
  4. Angelova M., Genova L., Pashova S., Slokoska L., Dolashka P. 1996; Effect of cultural conditions on the synthesis of superoxide dismutase by Humicola lutea 110. J Ferment Bioeng 82:464–468 [CrossRef]
    [Google Scholar]
  5. Beauchamp C., Fridovich I. 1971; Superoxide dismutase: Improved assay and an assay applicable to polyacrylamide gels. Anal Biochem 44:276–287 [CrossRef]
    [Google Scholar]
  6. Bordo D., Djinovı́c K., Bolognesi M. 1994; Conserved patterns in the Cu,Zn superoxide dismutase family. J Mol Biol 238:366–386 [CrossRef]
    [Google Scholar]
  7. D’Agnillo F., Chang T. M. 1998; Polychemoglobin-superoxide dismutase-catalase as a blood substitute with antioxidant properties. Nat Biotechnol 16:667–671 [CrossRef]
    [Google Scholar]
  8. Dimitrova P., Toshkova R., Ivanova E., Stefanova Z., Angelova M., Dolashka P., Voelter W. 2000; Superoxide production by phagocytes in myeloid Graffi tumour-bearing hamsters. Z Naturforsch 55c:788–805
    [Google Scholar]
  9. Dolganova A., Sharonov B. P. 1997; Application of various antioxidants in the treatment of influenza. Braz J Med Biol Res 30:1333–1336
    [Google Scholar]
  10. Edlund A., Edlund T., Hjalmarsson K., Marklund S. L., Sandström J., Strömqvist M., Tibell L. 1992; A non-glycosylated extracellular superoxide dismutase variant. Biochem J 288:451–456
    [Google Scholar]
  11. Forest K. T., Langford P. R., Kroll J. S., Getzoff E. D. 2000; Cu,Zn Superoxide dismutase structure from a microbial pathogen establishes a class with a conserved dimer interface. J Mol Biol 296:145–153 [CrossRef]
    [Google Scholar]
  12. Francois C., Marshall R. D., Neuberger A. 1962; Carbohydrates in protein. Biochem J 83:335–341
    [Google Scholar]
  13. Fridovich I. 1995; Superoxide radicals and superoxide dismutases. Annu Rev Biochem 64:97–112 [CrossRef]
    [Google Scholar]
  14. Fujita T., Furitsu H., Nishikawa M., Takakura Y., Sezaki H., Hashida M. 1992; Therapeutic effects of superoxide dismutase derivatives modified with mono- or polysaccharides on hepatic injury induced by ischaemia/reperfusion. Biochem Biophys Res Commun 189:191–196 [CrossRef]
    [Google Scholar]
  15. Guidot D. M., McCord J. M., Wright R. M., Repine J. E. 1993; Absence of electron transport (Rho0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major source of superoxide generation in vivo . J Biol Chem 268:26699–26703
    [Google Scholar]
  16. Hassan H. M. 1983; Oxygen toxicity and mutagenicity in prokaryotes. In Oxy Radicals and Their Scavenger Systems. Molecular Aspects . pp 198–206 Edited by Cohen G., Greenwald R. Amsterdam, New York, Oxford: Elsevier;
  17. Howlett N. G., Avery S. V. 1999; Flow cytometric investigation of heterogeneous copper-sensivity in asynchronously grown Saccharomyces cerevisiae . FEMS Microbiol Lett 176:379–386 [CrossRef]
    [Google Scholar]
  18. Kahlos K., Pitkanen S., Hassinen I., Linnainmaa K., Kinnula V. L. 1999; Generation of reactive oxygen species by human mesothelioma cells. Br J Cancer 80:25–31 [CrossRef]
    [Google Scholar]
  19. Kakimoto K., Kojima Y., Ishii K., Onone K., Maeda H. 1993; The suppressive effect of gelatin-conjugated superoxide dismutase on disease development and severity of collagen induced arthritis in mice. Clin Exp Immunol 94:241–246
    [Google Scholar]
  20. Kazanina G. A., Selezneva A. A. 1992; Yeast superoxide dismutase: isolation and properties. Prikl Biochim Microbiol 28:165–172 in Russian
    [Google Scholar]
  21. Kong Q., Lillehei K. O. 1998; Antioxidant inhibitors for cancer therapy. Med Hypotheses 51:405–409 [CrossRef]
    [Google Scholar]
  22. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  23. Li J. J., Rhim J. S., Schlegel R., Vousden K. H., Colburn N. H. 1998; Expression of dominant negative Jun inhibits elevated AP-1 and NF-kB transactivation and suppresses anchorage independent growth of HPV immortalized human keratinocytes. Oncogene 16:2711–2721 [CrossRef]
    [Google Scholar]
  24. Maksimenko A. V., Petrov A. D., Caliceti P., Konovalova G. G., Schiavon O., Grigor’eva E. L., Lankin V. Z., Veronese F. M. 1993; The modification of Cu, Zn-superoxide dismutase by monomethoxypolyethylene glycol improves the indices of the experimental therapy of the ischemic myocardium in rats. Eksp Klin Farmakol 56:14–18 in Russian
    [Google Scholar]
  25. Matès J. M., Sánchez-Jimènez F. 1999; Antioxidant enzymes and their implications in pathophysiologic processes. Front Biosci 4:D339–D345 [CrossRef]
    [Google Scholar]
  26. Matès J. M., Sánchez-Jimènez F. 2000; Role of active oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 32:157–170 [CrossRef]
    [Google Scholar]
  27. Misra H. P., Fridovich I. 1977; Purification and properties of superoxide dismutase from red alga, Porphyridium cruentum . J Biol Chem 252:6421–6423
    [Google Scholar]
  28. Nakauchi K., Ikata T., Katoh S., Hamada Y., Tsuchiya K., Fukuzawa K. 1996; Effects of lecithinized superoxide dismutase on rat spinal cord injury. J Neurotrauma 13:573–582
    [Google Scholar]
  29. Nimrod A., Ezov N., Parizada B., Weiss L., Tochner Z., Slavin S., Panet A., Gorecki M. 1994; Human recombinant CuZn SOD and Mn SOD as potential therapeutic agents. In Frontiers of Reactive Oxygen Species in Biology and Medicine V pp 383–387 Edited by Asada K. Yoshikawa T. Amsterdam, New York, Oxford: Elsevier;
    [Google Scholar]
  30. Oberley L. W., Buettner G. R. 1979; Role of superoxide dismutase in cancer: A review. Cancer Res 39:1141–1149
    [Google Scholar]
  31. Oda T., Akaike T., Hamamoto T., Suzuki F., Hirano T., Maeda H. 1989; Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer-conjugated SOD. Science 244:974–976 [CrossRef]
    [Google Scholar]
  32. Okada F., Nakai K., Kobayashi T. 15 other authors 1999; Inflammatory cell-mediated tumour progression and minisatellite mutation correlate with the decrease of antioxidative enzymes in murine fibrosarkoma cells. Br J Cancer 79:377–385 [CrossRef]
    [Google Scholar]
  33. Petruccioli M., Fenice M., Piccioni P., Federici F. 1995; Effect of stirred speed and buffering agents on the production of glucose oxidase and catalase by Penicillium variable (P16) in benchtop bioreactor. Enzyme Microb Technol 17:336–339 [CrossRef]
    [Google Scholar]
  34. Rios L., Cluzel J., Vennat J. C., Menerath J. M., Doly M. 1999; Comparison of intraocular treatment of DMTU and SOD following retinal ischemia in rats. J Ocul Pharmacol Ther 15:547–556 [CrossRef]
    [Google Scholar]
  35. Roughead Z. K., Johnson L. K., Hunt J. R. 1999; Dietary copper primarily affects antioxidant capacity and dietary iron mainly affects iron status in a surface response study of female rats fed varying concentrations of iron, zinc and copper. J Nutr 129:1368–1376
    [Google Scholar]
  36. Sabitha K. E., Shyamaladevi C. S. 1999; Oxidant and antioxidant activity changes in patients with oral cancer and treated with radiotherapy. Oral Oncol 35:273–277 [CrossRef]
    [Google Scholar]
  37. Sakajo S., Minagawa N., Yoshimoto A. 1993; Characterisation of the alternative oxidase protein in the yeast Hansenula anomala . FEBS Lett 318:310–312 [CrossRef]
    [Google Scholar]
  38. Seidman M. D., Quirk W. S., Shirwany N. A. 1999; Reactive oxygen metabolites, antioxidants and head and neck cancer. Head Neck 21:467–479 [CrossRef]
    [Google Scholar]
  39. Serkedjieva J., Ivanova E. 1997; Combined protective effect of an immunostimulatory bacterial preparation and rimantadine hydrochloride in experimental influenza A virus infection. Acta Virol 41:65–70
    [Google Scholar]
  40. Sharonov B. P., Dolganova A. V., Kisselev O. I. 1991; The effective use of superoxide dismutase from human erythrocytes in the late stages of experimental influenza infection. Vopr Virusol 36:477–480 in Russian
    [Google Scholar]
  41. Shilova N. K., Matyashova R. N., Ilchenko A. P. 1989; The effect of aeration on the activity of alcohol oxidase and enzymes utilising hydrogen peroxide in the course of Candida maltosa growth on paraffin.Microbiology (English translation of Microbiologiya ). 58430–435
  42. Sidwell R. W., Huffman J. H., Bailey K. W., Wong M. H., Nimrod A., Panet A. 1996; Inhibitory effects of recombinant manganese superoxide dismutase on influenza virus infection in mice. Antimicrob Agents Chemother 40:2626–2631
    [Google Scholar]
  43. Somogyi M. 1952; Notes on sugar determination. J Biol Chem 195:19–23
    [Google Scholar]
  44. Stenlund P., Tibell L. A. 1999; Chimeras of human extracellular and intracellular superoxide dismutases. Analysis of structure and function of the individual domains. Protein Eng 12:319–325 [CrossRef]
    [Google Scholar]
  45. Stralin P., Marklund S. L. 1994; Effects of oxidative stress on expression of extracellular superoxide dismutase, Cu/Zn-superoxide dismutase and Mn-superoxide dismutase in human dermal fibroblasts. Biochem J 298:347–352
    [Google Scholar]
  46. Toshkova R. 1995; Immunity and experiments for immunomodulation in hamsters with experimental myeloidtumour primary induced by virus of Graffi . PhD thesis; Sofia, Bulgaria:
  47. Trotti A. 1997; Toxicity antagonists in cancer therapy. Curr Opin Oncol 9:569–578 [CrossRef]
    [Google Scholar]
  48. Vercellone P. A., Smibert R. M., Krieg N. R. 1990; Catalase activity in Campylobacter jejuni : comparison of a wild-type strain with a tolerant variant. Can J Microbiol 36:449–451 [CrossRef]
    [Google Scholar]
  49. Yakimov M., Mladenov Z., Konstantinov A., Yanchev I. 1979; Transplantable myeloid tumour in hamsters (MTH) induced by Graffi virus. Gen Compar Pathol 6:24–35
    [Google Scholar]
  50. Yunoki M., Kawauchi M., Ukita N. 7 other authors 1997; Effect of lecithinized superoxide dismutase on traumatic brain injury in rats. J Neurotrauma 14:739–746 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-6-1641
Loading
/content/journal/micro/10.1099/00221287-147-6-1641
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error