1887

Abstract

Little is known about the genes and enzymes involved in sulfur assimilation in , or about the regulation of their expression or activity. To identify genes regulated by sulfur limitation, the authors used two- dimensional (2D) gel electrophoresis to compare the proteome of a wild-type strain grown with either sulfate or glutathione as sole sulfur source. A total of 15 proteins whose synthesis is modified under these two conditions were identified by matrix-assisted laser desorption/ionization time of flight (MALDI TOF) mass spectrometry. In the presence of sulfate, an increased amount of proteins involved in the metabolism of C units (SerA, GlyA, FolD) and in the biosynthesis of purines (PurQ, Xpt) and pyrimidines (Upp, PyrAA, PyrF) was observed. In the presence of glutathione, the synthesis of two uptake systems (DppE, SsuA), an oxygenase (SsuD), cysteine synthase (CysK) and two proteins of unknown function (YtmI, YurL) was increased. The changes in expression of the corresponding genes, in the presence of sulfate and glutathione, were monitored using slot-blot analyses and fusions. The gene is part of a locus of 12 genes which are co-regulated in response to sulfur availability. This putative operon is activated by a LysR-like regulator, YtlI. This is the first regulator involved in the control of expression in response to sulfur availability to be identified in

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-6-1631
2001-06-01
2019-08-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/6/1471631a.html?itemId=/content/journal/micro/10.1099/00221287-147-6-1631&mimeType=html&fmt=ahah

References

  1. d’Aubenton Carafa, Y., Brody, E. & Thermes, C. ( 1990; ). Prediction of Rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem–loop structures. J Mol Biol 216, 835-858.[CrossRef]
    [Google Scholar]
  2. Bernhardt, J., Büttner, K., Scharf, C. & Hecker, M. ( 1999; ). Dual channel imaging of two-dimensional electropherograms in Bacillus subtilis. Electrophoresis 20, 2225-2240.[CrossRef]
    [Google Scholar]
  3. Danchin, A., Guerdoux-Janet, P., Moszer, I. & Nitschke, P. ( 2000; ). Mapping the bacterial cell architecture into the chromosome. Philos Trans R Soc Lond B Biol Sci 355, 179-190.[CrossRef]
    [Google Scholar]
  4. Eichhorn, E., van der Ploeg, J. R. & Leisinger, T. ( 1999; ). Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli. J Biol Chem 274, 26639-26646.[CrossRef]
    [Google Scholar]
  5. Ferrari, F. A., Nguyen, A., Lang, D. & Hoch, J. A. ( 1983; ). Construction and properties of an integrable plasmid for Bacillus subtilis. J Bacteriol 154, 1513-1515.
    [Google Scholar]
  6. Greene, R. C. (1996). Biosynthesis of methionine. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 542–560. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  7. Grundy, F. J. & Henkin, T. M. ( 1998; ). The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram-positive bacteria. Mol Microbiol 30, 737-749.[CrossRef]
    [Google Scholar]
  8. Hummerjohann, J., Kuttel, E. Quadroni, M., Ragaller, J., Leisinger, T. & Kertesz, M. A. ( 1998; ). Regulation of the sulfate starvation response in Pseudomonas aeruginosa: role of cysteine biosynthetic intermediates. Microbiology 144, 1375–1386.[CrossRef]
    [Google Scholar]
  9. Iwanicka-Nowicka, R. & Hryniewicz, M. M. ( 1995; ). A new gene, cbl, encoding a member of the LysR family of transcriptional regulators belongs to Escherichia coli cys regulon. Gene 166, 11-17.[CrossRef]
    [Google Scholar]
  10. Kertesz, M. A., Leisinger, T. & Cook, A. M. ( 1993; ). Proteins induced by sulfate limitation in Escherichia coli, Pseudomonas putida or Staphylococcus aureus. J Bacteriol 175, 1187-1190.
    [Google Scholar]
  11. Kertesz, M. A., Schmidt-Larbig, K. & Wuest, T. ( 1999; ). A novel reduced flavin mononucleotide-dependent methanesulfonate sulfonatase encoded by the sulfur-regulated msu operon of Pseudomonas aeruginosa. J Bacteriol 181, 1464-1473.
    [Google Scholar]
  12. Kredich, N. M. (1996). Biosynthesis of cysteine. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 514–527. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  13. Kunst, F. & Rapoport, G. ( 1995; ). Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J Bacteriol 177, 2403-2407.
    [Google Scholar]
  14. Kunst, F., Ogasawara, N., Moszer, I. & 148 other authors ( 1997; ). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef]
    [Google Scholar]
  15. Mansilla, M. C. & de Mendoza, D. ( 1997; ). l-Cysteine biosynthesis in Bacillus subtilis: identification, sequencing, and functional characterization of the gene coding for phosphoadenylylsulfate sulfotransferase. J Bacteriol 179, 976-981.
    [Google Scholar]
  16. Mansilla, M. C. & de Mendoza, D. ( 2000; ). The Bacillus subtilis cysP gene encodes a novel sulphate permease related to the inorganic phosphate transporter (Pit) family. Microbiology 146, 815-821.
    [Google Scholar]
  17. Mathiopoulos, C., Mueller, J. P., Slack, F. J., Murphy, C. G., Patankar, S., Bukusoglu, G. & Sonenshein, A. L. ( 1991; ). A Bacillus subtilis dipeptide transport system expressed early during sporulation. Mol Microbiol 5, 1903-1913.[CrossRef]
    [Google Scholar]
  18. Mazel, D. & Marlière, P. ( 1989; ). Adaptative eradication of methionine and cysteine from cyanobacterial light-harvesting proteins. Nature 341, 245-248.[CrossRef]
    [Google Scholar]
  19. Meister, A, ( 1988; ). Glutathione metabolism and its selective modification. J Biol Chem 263, 17205–17208.
    [Google Scholar]
  20. Miller, J. H. (1972). Assay of β-galactosidase. Experiments in Molecular Genetics, pp. 352–355. Edited by J. H. Miller. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  21. O’Farrell, P. H. ( 1975; ). High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250, 4007-4021.
    [Google Scholar]
  22. Pasternak, C. A., Ellis, R. J., Jones-Mortimer, M. C. & Crichton, C. E. ( 1965; ). The control of sulfate reduction in bacteria. Biochem J 96, 270-275.
    [Google Scholar]
  23. van der Ploeg, J. R., Weiss, M. A., Saller, E., Nashimoto, H., Saito, N., Kertesz, M. A. & Leisinger, T. ( 1996; ). Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source. J Bacteriol 178, 5438-5446.
    [Google Scholar]
  24. van der Ploeg, J. R., Iwanicka-Nowicka, R., Kertesz, M. A., Leisinger, T. & Hryniewicz, M. M. ( 1997; ). Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli. J Bacteriol 179, 7671-7678.
    [Google Scholar]
  25. van der Ploeg, J. R., Cummings, N. J., Leisinger, T. & Connerton, I. F. ( 1998; ). Bacillus subtilis genes for the utilization of sulfur from aliphatic sulfonates. Microbiology 144, 2555-2561.[CrossRef]
    [Google Scholar]
  26. van der Ploeg, J. R., Iwanicka-Nowicka, R., Bykowski, T., Hryniewicz, M. M. & Leisinger, T. ( 1999; ). The Escherichia coli ssuEADCB gene cluster is required for the utilization of sulfur from aliphatic sulfonates and is regulated by the transcriptional activator Cbl. J Biol Chem 274, 29358-29365.[CrossRef]
    [Google Scholar]
  27. Quadroni, M., Staudenmann, W., Kertesz, M. & James, P. ( 1996; ). Analysis of global responses by protein and peptide fingerprinting of proteins isolated by two-dimensional gel electrophoresis. Application to the sulfate-starvation response of Escherichia coli. Eur J Biochem 239, 773-781.[CrossRef]
    [Google Scholar]
  28. Quadroni, M., James, P., Dainese-Hatt, P. & Kertesz, M. A. ( 1999; ). Proteome mapping, mass spectrometric sequencing and reverse transcription-PCR for characterization of the sulfate starvation- induced response in Pseudomonas aeruginosa PAO1. Eur J Biochem 266, 986-996.[CrossRef]
    [Google Scholar]
  29. Quentin, Y., Fichant, G. & Denizot, F. ( 1999; ). Inventory, assembly and analysis of Bacillus subtilis ABC transport systems. J Mol Biol 287, 467-484.[CrossRef]
    [Google Scholar]
  30. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  31. Sekowska, A., Kung, H. F. & Danchin, A. ( 2000; ). Sulfur metabolism in Escherichia coli and related bacteria, facts and fiction. J Mol Microbiol Biotechnol 2, 145-177.
    [Google Scholar]
  32. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. ( 1996; ). Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68, 850-858.[CrossRef]
    [Google Scholar]
  33. Solovieva, I. M., Kreneva, R. A., Leak, D. J. & Perumov, D. A. ( 1999; ). The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon. Microbiology 145, 67-73.[CrossRef]
    [Google Scholar]
  34. Stülke, J., Martin-Verstraete, I., Zagorec, M., Rose, M., Klier, A. & Rapoport, G. ( 1997; ). Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. Mol Microbiol 25, 65-78.[CrossRef]
    [Google Scholar]
  35. Uria-Nickelsen, M. R., Leadbetter, E. R. & Godchaux, W. D.III ( 1993; ). Sulfonate-sulfur assimilation by yeasts resembles that of bacteria. FEMS Microbiol Lett 114, 73-77.[CrossRef]
    [Google Scholar]
  36. Vagner, V., Dervyn, E. & Ehrlich, S. D. ( 1998; ). A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144, 3097-3104.[CrossRef]
    [Google Scholar]
  37. Wu, L. F., Reizer, A., Reizer, J., Cai, B., Tomich, J. M. & Saier, M. H.Jr ( 1991; ). Nucleotide sequence of the Rhodobacter capsulatus fruK gene, which encodes fructose-1-phosphate kinase: evidence for a kinase superfamily including both phosphofructokinases of Escherichia coli. J Bacteriol 173, 3117-3127.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-6-1631
Loading
/content/journal/micro/10.1099/00221287-147-6-1631
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error