1887

Abstract

The GPo1 (commonly known as GPo1) and gene clusters, which encode proteins involved in the conversion of n-alkanes to fatty acids, are located end to end on the OCT plasmid, separated by 97 kb of DNA. This DNA segment encodes, amongst others, a methyl-accepting transducer protein (AlkN) that may be involved in chemotaxis to alkanes. In P1, the and gene clusters are flanked by almost identical copies of the insertion sequence IS, constituting a class 1 transposon. Other insertion sequences flank and interrupt the genes in both strains. Apart from the coding regions of the GPo1 and P1 genes (80–92% sequence identity), only the and promoter regions are conserved. Competition experiments suggest that highly conserved inverted repeats in the and promoter regions bind AlkS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-6-1621
2001-06-01
2019-08-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/6/1471621a.html?itemId=/content/journal/micro/10.1099/00221287-147-6-1621&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403-410.[CrossRef]
    [Google Scholar]
  2. Bachmann, B. (1987). Derivations and genotypes of some mutant derivatives of Escherichia coli K-12. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1190–1219. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  3. Baptist, J. N., Gholson, R. K. & Coon, M. J. ( 1963; ). Hydrocarbon oxidation by a bacterial enzyme system: I. Products of octane oxidation. Biochim Biophys Acta 69, 40-47.[CrossRef]
    [Google Scholar]
  4. van Beilen, J. B. (1994). Alkane oxidation by Pseudomonas oleovorans: genes and proteins. PhD thesis, University of Groningen.
  5. van Beilen, J. B., Eggink, G., Enequist, H., Bos, R. & Witholt, B. ( 1992a; ). DNA sequence determination and functional characterization of the OCT-plasmid-encoded alkJKL genes of Pseudomonas oleovorans. Mol Microbiol 6, 3121-3136.[CrossRef]
    [Google Scholar]
  6. van Beilen, J. B., Penninga, D. & Witholt, B. ( 1992b; ). Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. J Biol Chem 267, 9194-9201.
    [Google Scholar]
  7. van Beilen, J. B., Wubbolts, M. G. & Witholt, B. ( 1994; ). Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5, 161-174.[CrossRef]
    [Google Scholar]
  8. Benson, S., Fennewald, M., Shapiro, J. & Huettner, C. ( 1977; ). Fractionation of inducible alkane hydroxylase activity in Pseudomonas putida and characterization of hydroxylase-negative plasmid mutations. J Bacteriol 132, 614-621.
    [Google Scholar]
  9. Bustamante, C., Gurrieri, S. & Smith, S. B. ( 1993; ). Towards a molecular description of pulsed-field gel electrophoresis. Trends Biotechnol 11, 23-30.[CrossRef]
    [Google Scholar]
  10. Canosa, I., Yuste, L. & Rojo, F. ( 1999; ). Role of the alternative sigma factor σs in the expression of the AlkS regulator of the Pseudomonas oleovorans alkane degradation pathway. J Bacteriol 181, 1748-1754.
    [Google Scholar]
  11. Canosa, I., Sanchez-Romero, J. M., Yuste, L. & Rojo, F. ( 2000; ). A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway. Mol Microbiol 35, 791-799.[CrossRef]
    [Google Scholar]
  12. Chakrabarty, A. M., Chou, G. & Gunsalus, I. C. ( 1973; ). Genetic regulation of octane dissimulation plasmid in Pseudomonas. Proc Natl Acad Sci USA 70, 1137-1140.[CrossRef]
    [Google Scholar]
  13. Collado-Vides, J., Magasanik, B. & Gralla, J. D. ( 1991; ). Control site location and transcriptional regulation in Escherichia coli. Microbiol Rev 55, 371-394.
    [Google Scholar]
  14. Dower, W. J., Miller, J. F. & Ragsdale, C. W. ( 1988; ). High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16, 6127.[CrossRef]
    [Google Scholar]
  15. Eggink, G., Lageveen, R. G., Altenburg, B. & Witholt, B. ( 1987a; ). Controlled and functional expression of Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli. J Biol Chem 262, 17712-17718.
    [Google Scholar]
  16. Eggink, G., van Lelyveld, P. H., Arnberg, A., Arfman, N., Witteveen, C. & Witholt, B. ( 1987b; ). Structure of the Pseudomonas putida alkBAC operon. Identification of transcription and translation products. J Biol Chem 262, 6400-6406.
    [Google Scholar]
  17. Eggink, G., Engel, H., Vriend, G., Terpstra, P. & Witholt, B. ( 1990; ). Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. J Mol Biol 212, 135-142.[CrossRef]
    [Google Scholar]
  18. Fennewald, M. & Shapiro, J. ( 1977; ). Regulatory mutations of the Pseudomonas plasmid alk regulon. J Bacteriol 132, 622-627.
    [Google Scholar]
  19. Fennewald, M., Prevatt, W., Meyer, R. & Shapiro, J. ( 1978; ). Isolation of Inc P-2 plasmid DNA from Pseudomonas aeruginosa. Plasmid 1, 164-173.[CrossRef]
    [Google Scholar]
  20. Fennewald, M., Benson, S., Oppici, M. & Shapiro, J. ( 1979; ). Insertion element analysis and mapping of the Pseudomonas plasmid alk regulon. J Bacteriol 139, 940-952.
    [Google Scholar]
  21. Fournier, P., Paulus, F. & Otten, L. ( 1993; ). IS870 requires a 5′-CTAG-3′ target sequence to generate the stop-codon for its large ORF1. J Bacteriol 175, 3151-3160.
    [Google Scholar]
  22. Grimm, A. C. & Harwood, C. S. ( 1999; ). NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol 181, 3310-3316.
    [Google Scholar]
  23. Grund, A., Shapiro, J., Fennewald, M., Bacha, P., Leahy, J., Markbreiter, K., Nieder, M. & Toepfer, M. ( 1975; ). Regulation of alkane oxidation in Pseudomonas putida. J Bacteriol 123, 546-556.
    [Google Scholar]
  24. Hanekamp, T., Kobayashi, D., Hayes, S. & Stayton, M. M. ( 1997; ). Avirulence gene D of Pseudomonas syringae pv. tomato may have undergone horizontal gene transfer. FEBS Lett 415, 40-44.[CrossRef]
    [Google Scholar]
  25. Hauben, L., Vauterin, L., Swings, J. & Moore, E. R. B. ( 1997; ). Comparison of 16S ribosomal DNA sequences of all Xanthomonas species. Int J Syst Bacteriol 47, 328-335.[CrossRef]
    [Google Scholar]
  26. Henikoff, S. ( 1984; ). Unidirectional digestion with exonuclease-III creates targeted breakpoints for DNA sequencing. Gene 28, 351-359.[CrossRef]
    [Google Scholar]
  27. Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J. (1990). PCR Protocols. A Guide to Methods and Applications. San Diego: Academic Press.
  28. Kado, C. I. & Liu, S.-T. ( 1981; ). Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145, 1365-1373.
    [Google Scholar]
  29. Kleckner, N. ( 1981; ). Transposable elements in prokaryotes. Annu Rev Genet 15, 341-404.[CrossRef]
    [Google Scholar]
  30. Kok, M., Oldenhuis, R., van der Linden, M. P. G., Meulenberg, C. H. C., Kingma, J. & Witholt, B. ( 1989a; ). The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase. J Biol Chem 264, 5442-5451.
    [Google Scholar]
  31. Kok, M., Oldenhuis, R., van der Linden, M. P. G., Raatjes, P., Kingma, J., van Lelyveld, P. H. & Witholt, B. ( 1989b; ). The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. J Biol Chem 264, 5435-5441.
    [Google Scholar]
  32. Lageveen, R. G., Huisman, G. W., Preusting, H., Ketelaar, P. E. F., Eggink, G. & Witholt, B. ( 1988; ). Formation of polyester by Pseudomonas oleovorans: the effect of substrate on the formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54, 2924-2932.
    [Google Scholar]
  33. Lee, M. & Chandler, A. C. ( 1941; ). A study of the nature, growth and control of bacteria in cutting compounds. J Bacteriol 41, 373-386.
    [Google Scholar]
  34. Luria, S. E., Adam, J. N. & Teng, R. C. ( 1960; ). Transduction of lactose utilizing ability among strains of Escherichia coli and Shigella dysenteriae and the properties of the transducing phage particle. Virology 12, 348-390.[CrossRef]
    [Google Scholar]
  35. Mahillon, J. & Chandler, M. ( 1998; ). Insertion sequences. Microbiol Mol Biol Rev 62, 725-774.
    [Google Scholar]
  36. Nozaki, M. ( 1970; ). Metapyrocatechase. Methods Enzymol 17, 522-525.
    [Google Scholar]
  37. Owen, D. J. ( 1986; ). Molecular cloning and characterization of sequences from the regulatory cluster of the Pseudomonas plasmid alk system. Mol Gen Genet 203, 64-72.[CrossRef]
    [Google Scholar]
  38. Panke, S., de Lorenzo, V., Kaiser, A., Witholt, B. & Wubbolts, M. G. ( 1999a; ). Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid phase applications. Appl Environ Microbiol 65, 5619-5623.
    [Google Scholar]
  39. Panke, S., Meyer, A., Huber, C. M., Witholt, B. & Wubbolts, M. G. ( 1999b; ). An alkane-responsive expression system for the production of fine chemicals. Appl Environ Microbiol 65, 2324-2332.
    [Google Scholar]
  40. Rakin, A. & Heesemann, J. ( 1995; ). Virulence-associated fyuA/irp2 gene cluster of Yersinia enterocolitica biotype 1B carries a novel insertion sequence IS1328. FEMS Microbiol Lett 129, 287-292.
    [Google Scholar]
  41. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  42. Schwartz, R. D. ( 1973; ). Octene epoxidation by a cold-stable alkane-oxidizing isolate of Pseudomonas oleovorans. Appl Microbiol 25, 574-577.
    [Google Scholar]
  43. Schwartz, R. D. & McCoy, C. J. ( 1973; ). Pseudomonas oleovorans hydroxylation-epoxidation system: additional strain improvements. Appl Microbiol 26, 217-218.
    [Google Scholar]
  44. Smits, T. H. M., Röthlisberger, M., Witholt, B. & van Beilen, J. B. ( 1999; ). Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ Microbiol 1, 307-318.[CrossRef]
    [Google Scholar]
  45. Stanier, R. Y., Palleroni, N. J. & Doudoroff, M. ( 1966; ). The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43, 159-271.[CrossRef]
    [Google Scholar]
  46. Taguchi, K., Fukutomi, H., Kuroda, A., Kato, J. & Ohtake, H. ( 1997; ). Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. Microbiology 143, 3223-3229.[CrossRef]
    [Google Scholar]
  47. Tan, H.-M. ( 1999; ). Bacterial catabolic transposons. Appl Microbiol Biotechnol 51, 1-12.[CrossRef]
    [Google Scholar]
  48. Witholt, B., de Smet, M. J., Kingma, J., van Beilen, J. B., Kok, M., Lageveen, R. G. & Eggink, G. ( 1990; ). Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends Biotechnol 8, 46-52.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-6-1621
Loading
/content/journal/micro/10.1099/00221287-147-6-1621
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error