1887

Abstract

The GPo1 (commonly known as GPo1) and gene clusters, which encode proteins involved in the conversion of n-alkanes to fatty acids, are located end to end on the OCT plasmid, separated by 97 kb of DNA. This DNA segment encodes, amongst others, a methyl-accepting transducer protein (AlkN) that may be involved in chemotaxis to alkanes. In P1, the and gene clusters are flanked by almost identical copies of the insertion sequence IS, constituting a class 1 transposon. Other insertion sequences flank and interrupt the genes in both strains. Apart from the coding regions of the GPo1 and P1 genes (80–92% sequence identity), only the and promoter regions are conserved. Competition experiments suggest that highly conserved inverted repeats in the and promoter regions bind AlkS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-6-1621
2001-06-01
2020-03-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/6/1471621a.html?itemId=/content/journal/micro/10.1099/00221287-147-6-1621&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  2. Bachmann B.. others 1987; Derivations and genotypes of some mutant derivatives of Escherichia coli K-12. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp1190–1219 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Baptist J. N., Gholson R. K., Coon M. J.. 1963; Hydrocarbon oxidation by a bacterial enzyme system: I. Products of octane oxidation. Biochim Biophys Acta 69:40–47[CrossRef]
    [Google Scholar]
  4. van Beilen J. B.. 1994; Alkane oxidation by Pseudomonas oleovorans: genes and proteins. PhD thesis, University of Groningen;
    [Google Scholar]
  5. van Beilen J. B., Eggink G., Enequist H., Bos R., Witholt B.. 1992a; DNA sequence determination and functional characterization of the OCT-plasmid-encoded alkJKL genes of Pseudomonas oleovorans . Mol Microbiol6:3121–3136[CrossRef]
    [Google Scholar]
  6. van Beilen J. B., Penninga D., Witholt B.. 1992b; Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. . J Biol Chem267:9194–9201
    [Google Scholar]
  7. van Beilen J. B., Wubbolts M. G., Witholt B.. 1994; Genetics of alkane oxidation by Pseudomonas oleovorans. . Biodegradation 5:161–174[CrossRef]
    [Google Scholar]
  8. Benson S., Fennewald M., Shapiro J., Huettner C.. 1977; Fractionation of inducible alkane hydroxylase activity in Pseudomonas putida and characterization of hydroxylase-negative plasmid mutations. J Bacteriol132:614–621
    [Google Scholar]
  9. Bustamante C., Gurrieri S., Smith S. B.. 1993; Towards a molecular description of pulsed-field gel electrophoresis. Trends Biotechnol11:23–30[CrossRef]
    [Google Scholar]
  10. Canosa I., Yuste L., Rojo F.. 1999; Role of the alternative sigma factor σs in the expression of the AlkS regulator of the Pseudomonas oleovorans alkane degradation pathway. J Bacteriol181:1748–1754
    [Google Scholar]
  11. Canosa I., Sanchez-Romero J. M., Yuste L., Rojo F.. 2000; A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway. Mol Microbiol35:791–799[CrossRef]
    [Google Scholar]
  12. Chakrabarty A. M., Chou G., Gunsalus I. C.. 1973; Genetic regulation of octane dissimulation plasmid in Pseudomonas. . Proc Natl Acad Sci USA70:1137–1140[CrossRef]
    [Google Scholar]
  13. Collado-Vides J., Magasanik B., Gralla J. D.. 1991; Control site location and transcriptional regulation in Escherichia coli. . Microbiol Rev55:371–394
    [Google Scholar]
  14. Dower W. J., Miller J. F., Ragsdale C. W.. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res16:6127[CrossRef]
    [Google Scholar]
  15. Eggink G., Lageveen R. G., Altenburg B., Witholt B.. 1987a; Controlled and functional expression of Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli. . J Biol Chem262:17712–17718
    [Google Scholar]
  16. Eggink G., Arnberg A., Arfman N., Witteveen C., Witholt B., van Lelyveld P. H.. 1987b; Structure of the Pseudomonas putida alkBAC operon. Identification of transcription and translation products. J Biol Chem262:6400–6406
    [Google Scholar]
  17. Eggink G., Engel H., Vriend G., Terpstra P., Witholt B.. 1990; Rubredoxin reductase of Pseudomonas oleovorans . Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. J Mol Biol212:135–142[CrossRef]
    [Google Scholar]
  18. Fennewald M., Shapiro J.. 1977; Regulatory mutations of the Pseudomonas plasmid alk regulon. J Bacteriol132:622–627
    [Google Scholar]
  19. Fennewald M., Prevatt W., Meyer R., Shapiro J.. 1978; Isolation of Inc P-2 plasmid DNA from Pseudomonas aeruginosa. . Plasmid 1:164–173[CrossRef]
    [Google Scholar]
  20. Fennewald M., Benson S., Oppici M., Shapiro J.. 1979; Insertion element analysis and mapping of the Pseudomonas plasmid alk regulon. J Bacteriol139:940–952
    [Google Scholar]
  21. Fournier P., Paulus F., Otten L.. 1993; IS 870 requires a 5′-CTAG-3′ target sequence to generate the stop-codon for its large ORF1. J Bacteriol175:3151–3160
    [Google Scholar]
  22. Grimm A. C., Harwood C. S.. 1999; NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol181:3310–3316
    [Google Scholar]
  23. Grund A., Shapiro J., Fennewald M., Bacha P., Leahy J., Markbreiter K., Nieder M., Toepfer M.. 1975; Regulation of alkane oxidation in Pseudomonas putida. . J Bacteriol 123:546–556
    [Google Scholar]
  24. Hanekamp T., Kobayashi D., Hayes S., Stayton M. M.. 1997; Avirulence gene D of Pseudomonas syringae pv. tomato may have undergone horizontal gene transfer. FEBS Lett415:40–44[CrossRef]
    [Google Scholar]
  25. Hauben L., Vauterin L., Swings J., Moore E. R. B.. 1997; Comparison of 16S ribosomal DNA sequences of all Xanthomonas species. Int J Syst Bacteriol47:328–335[CrossRef]
    [Google Scholar]
  26. Henikoff S.. 1984; Unidirectional digestion with exonuclease-III creates targeted breakpoints for DNA sequencing. Gene28:351–359[CrossRef]
    [Google Scholar]
  27. Innis M. A., Gelfand D. H., Sninsky J. J., White T. J.. 1990; PCR Protocols. A Guide to Methods and Applications San Diego: Academic Press;
    [Google Scholar]
  28. Kado C. I., Liu S.-T.. 1981; Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol145:1365–1373
    [Google Scholar]
  29. Kleckner N.. 1981; Transposable elements in prokaryotes. Annu Rev Genet15:341–404[CrossRef]
    [Google Scholar]
  30. Kok M., Oldenhuis R., Meulenberg C. H. C., Kingma J., Witholt B., van der Linden M. P. G.. 1989a; The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase. J Biol Chem264:5442–5451
    [Google Scholar]
  31. Kok M., Oldenhuis R., Raatjes P., Kingma J., van Lelyveld P. H., Witholt B., van der Linden M. P. G.. 1989b; The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. J Biol Chem264:5435–5441
    [Google Scholar]
  32. Lageveen R. G., Huisman G. W., Preusting H., Ketelaar P. E. F., Eggink G., Witholt B.. 1988; Formation of polyester by Pseudomonas oleovorans : the effect of substrate on the formation and composition of poly-( R )-3-hydroxyalkanoates and poly-( R )-3-hydroxyalkenoates. Appl Environ Microbiol54:2924–2932
    [Google Scholar]
  33. Lee M., Chandler A. C.. 1941; A study of the nature, growth and control of bacteria in cutting compounds. J Bacteriol41:373–386
    [Google Scholar]
  34. Luria S. E., Adam J. N., Teng R. C.. 1960; Transduction of lactose utilizing ability among strains of Escherichia coli and Shigella dysenteriae and the properties of the transducing phage particle. Virology12:348–390[CrossRef]
    [Google Scholar]
  35. Mahillon J., Chandler M.. 1998; Insertion sequences. Microbiol Mol Biol Rev62:725–774
    [Google Scholar]
  36. Nozaki M.. 1970; Metapyrocatechase. Methods Enzymol17:522–525
    [Google Scholar]
  37. Owen D. J.. 1986; Molecular cloning and characterization of sequences from the regulatory cluster of the Pseudomonas plasmid alk system. Mol Gen Genet203:64–72[CrossRef]
    [Google Scholar]
  38. Panke S., Kaiser A., Witholt B., Wubbolts M. G., de Lorenzo V.. 1999a; Engineering of a stable whole-cell biocatalyst capable of ( S )-styrene oxide formation for continuous two-liquid phase applications. Appl Environ Microbiol65:5619–5623
    [Google Scholar]
  39. Panke S., Meyer A., Huber C. M., Witholt B., Wubbolts M. G.. 1999b; An alkane-responsive expression system for the production of fine chemicals. Appl Environ Microbiol65:2324–2332
    [Google Scholar]
  40. Rakin A., Heesemann J.. 1995; Virulence-associated fyuA / irp2 gene cluster of Yersinia enterocolitica biotype 1B carries a novel insertion sequence IS 1328. . FEMS Microbiol Lett129:287–292
    [Google Scholar]
  41. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Schwartz R. D.. 1973; Octene epoxidation by a cold-stable alkane-oxidizing isolate of Pseudomonas oleovorans. . Appl Microbiol25:574–577
    [Google Scholar]
  43. Schwartz R. D., McCoy C. J.. 1973; Pseudomonas oleovorans hydroxylation-epoxidation system: additional strain improvements. Appl Microbiol26:217–218
    [Google Scholar]
  44. Smits T. H. M., Witholt B., Röthlisberger M., van Beilen J. B.. 1999; Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ Microbiol1:307–318[CrossRef]
    [Google Scholar]
  45. Stanier R. Y., Palleroni N. J., Doudoroff M.. 1966; The aerobic pseudomonads: a taxonomic study. J Gen Microbiol43:159–271[CrossRef]
    [Google Scholar]
  46. Taguchi K., Fukutomi H., Kuroda A., Kato J., Ohtake H.. 1997; Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. . Microbiology 143:3223–3229[CrossRef]
    [Google Scholar]
  47. Tan H.-M.. 1999; Bacterial catabolic transposons. Appl Microbiol Biotechnol51:1–12[CrossRef]
    [Google Scholar]
  48. Witholt B., Kingma J., Kok M., Lageveen R. G., Eggink G., de Smet M. J., van Beilen J. B.. 1990; Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential. Trends Biotechnol8:46–52[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-6-1621
Loading
/content/journal/micro/10.1099/00221287-147-6-1621
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error