1887

Abstract

The pathogenic neisseriae are fastidious bacteria that are only able to grow on a restricted range of carbon sources. The genome sequence of strain MC58 predicts the presence of a complete citric acid cycle (CAC), but there have been no detailed biochemical studies of carbon metabolism in this important pathogen. In this study, both NMR and conventional enzyme assays were used to investigate the central metabolic pathways of a serogroup B strain (K454). C-NMR labelling patterns of amino acids from hydrolysed cell proteins after growth with either 2- or 3-[C]pyruvate were consistent with the operation of a complete oxidative CAC. Enzyme assays showed that cell-free extracts contained all the CAC enzymes predicted from the genome sequence, including a membrane-bound malate:quinone oxidoreductase which is present in place of the conventional NAD-linked cytoplasmic malate dehydrogenase. H-NMR studies showed that growth on glucose, lactate and, especially, pyruvate, resulted in the excretion of significant amounts of acetate into the culture supernatant. This occurred via the phosphotransacetylase (PTA)–acetate kinase (ACK) pathway. Extremely high specific activities of PTA (7–14 μmol min mg) were detected in cell-free extracts, although ACK activities were much lower (46–298 nmol min mg). Expression of PTA and ACK activities was not co-ordinately regulated during growth on combinations of carbon sources. This may be related to the presence of two paralogues in which are, unusually, unlinked to the gene.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-6-1473
2001-06-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/6/1471473a.html?itemId=/content/journal/micro/10.1099/00221287-147-6-1473&mimeType=html&fmt=ahah

References

  1. Boynton, Z. L., Bennett, G. N. & Rudolph, F. B. ( 1996; ). Cloning, sequencing and expression of genes encoding phosphotransacetylase and acetate kinase from Clostridium acetobutylicum ATCC 824. Appl Environ Micobiol 62, 2758-2766.
    [Google Scholar]
  2. Cartwright, K. A. V., Stuart, J. M. & Noah, N. D. ( 1986; ). An outbreak of meningococcal disease in Gloucestershire. Lancet 8506, 558-561.
    [Google Scholar]
  3. Chapin, C. W. ( 1918; ). Carbon dioxide in the primary cultivation of the gonococcus. J Infect Dis 19, 342-343.
    [Google Scholar]
  4. Chiang, S. L. & Mekalanos, J. J. ( 1998; ). Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol Microbiol 27, 797-805.[CrossRef]
    [Google Scholar]
  5. Cooper, R. M. & Kornberg, H. L. ( 1974; ). Phosphotransacetylase synthetase and pyruvate phosphate dikinase. In The Enzymes , pp. 6331-649. Edited by P. D. Boyer. New York:Academic Press.
  6. Elmansi, E. M. T. & Holms, W. H. ( 1989; ). Control of carbon flux to acetate excretion during growth of Escherichia coli in batch and continuous cultures. J Gen Microbiol 135, 2875-2883.
    [Google Scholar]
  7. Erwin, A. L. & Gotschlich, E. M. ( 1993; ). Oxidation of d-lactate and l-lactate by Neisseria meningitidis: purification and cloning of meningococcal d-lactate dehydrogenase. J Bacteriol 175, 6382-6391.
    [Google Scholar]
  8. Erwin, A. L. & Gotschlich, E. M. ( 1996; ). Cloning of a Neisseria meningitidis gene for l-lactate dehydrogenase (l-LDH): evidence for a second meningococcal l-LDH with different regulation. J Bacteriol 178, 4807-4813.
    [Google Scholar]
  9. Hebeler, B. H. & Morse, S. A. ( 1976; ). Physiology and metabolism of pathogenic Neisseria: tricarboxylic acid cycle activity in Neisseria gonorrhoeae. J Bacteriol 128, 192-201.
    [Google Scholar]
  10. Holten, E. ( 1974a; ). Glucokinase and glucose 6-phosphate dehydrogenase in Neisseria. Acta Pathol Microbiol Scand Sect B 82, 201-206.
    [Google Scholar]
  11. Holten, E. ( 1974b; ). 6-Phosphogluconate dehydrogenase and enzymes of the Entner–Doudoroff pathway in Neisseria. Acta Pathol Microbiol Scand Sect B 82, 207-213.
    [Google Scholar]
  12. Holten, E. ( 1975; ). Radiorespirometric studies in the genus Neisseria. 1. The catabolism of glucose. Acta Pathol Microbiol Scand Sect B 83, 353-366.
    [Google Scholar]
  13. Holten, E. ( 1976a; ). Radiorespirometric studies in the genus Neisseria. 3. The catabolism of pyruvate and acetate. Acta Pathol Microbiol Scand Sect B 84, 9-16.
    [Google Scholar]
  14. Holten, E. ( 1976b; ). Pyridine nucleotide independent oxidation of l-malate in the genus Neisseria. Acta Pathol Microbiol Scand Sect B 84, 17-21.
    [Google Scholar]
  15. Holten, E. & Jyssum, K. ( 1974; ). Activities of some enzymes concerning pyruvate metabolism in Neisseria. Acta Pathol Microbiol Scand Sect B 82, 843-848.
    [Google Scholar]
  16. Jyssum, K. ( 1960; ). Intermediate reactions of the tricarboxylic acid cycle in meningococci. Acta Pathol Microbiol Scand Sect B 48, 121-132.
    [Google Scholar]
  17. Jyssum, K. & Jyssum, S. ( 1961; ). Phosphoenolpyruvic carboxylase activity in extracts from Neisseria meningitidis. Acta Pathol Microbiol Scand Sect B 54, 412-424.
    [Google Scholar]
  18. Klein, N. J., Heydermann, R. S. & Levin, M. ( 1993; ). Management of meningococcal infections. Br Med J 50, 42-49.
    [Google Scholar]
  19. Latimer, M. T. & Ferry, J. G. ( 1993; ). Cloning, sequence analysis, and hyperexpression of the genes encoding phosphotransacetylase and acetate kinase from Methanosarcina thermophila. J Bacteriol 175, 6822-6829.
    [Google Scholar]
  20. Lienhard, G. E. & Secemski, I. I. ( 1973; ). P1,P5-Di(adenosine-5′) pentaphosphate, a potent multisubstrate inhibitor of adenylate kinase. J Biol Chem 248, 1121-1123.
    [Google Scholar]
  21. Matsuyama, A., Yamamoto-Otake, H., Hewitt, J., MacGillivray, R. T. A. & Nakano, E. ( 1994; ). Nucleotide sequence of the phosphotransacetylase gene of Escherichia coli K12. Biochim Biophys Acta 1219, 559-562.[CrossRef]
    [Google Scholar]
  22. McCleary, W. R. ( 1996; ). The activation of PhoB by acetylphosphate. Mol Microbiol 20, 1155-1163.[CrossRef]
    [Google Scholar]
  23. McCleary, W. R. & Stock, J. B. ( 1994; ). Acetyl phosphate and the activation of two-component response regulators. J Biol Chem 269, 31567-31572.
    [Google Scholar]
  24. McCleary, W. R., Stock, J. B. & Ninfa, A. J. ( 1993; ). Is acetyl phosphate a global signal in Escherichia coli? J Bacteriol 175, 2793-2798.
    [Google Scholar]
  25. Morse, J. R. ( 1979; ). The biology of the gonococcus. Crit Rev Microbiol 7, 93-189.[CrossRef]
    [Google Scholar]
  26. Morse, S. A., Cacciapuoti, A. F. & Lysko, P. ( 1979; ). Physiology of Neisseria gonorrhoeae. Adv Microb Physiol 20, 251-320.
    [Google Scholar]
  27. Nyström, T. ( 1994; ). The glucose-starvation stimulon of Escherichia coli: induced and repressed synthesis of enzymes of central metabolic pathways and role of acetyl phosphate in gene expression and starvation survival. Mol Microbiol 12, 833-843.[CrossRef]
    [Google Scholar]
  28. Pickett, M. W., Williamson, M. P. & Kelly, D. J. ( 1994; ). An enzyme and 13C-NMR study of carbon metabolism in heliobacteria. Photosynth Res 41, 75-88.[CrossRef]
    [Google Scholar]
  29. Rosenthal, S. N. & Fendler, J. H. ( 1976; ). 13C-NMR spectroscopy in macromolecular systems of biological interest. Adv Phys Org Chem 13, 279-423.
    [Google Scholar]
  30. Spellerberg, B., Cundell, D. R., Sandros, J. & 4 other authors ( 1996; ). Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae. Mol Microbiol 19, 803–813.[CrossRef]
    [Google Scholar]
  31. Sprott, G. D., Ekiel, I. & Patel, G. P. ( 1993; ). Metabolic pathways in Methanococcus jannaschii and other methanogenic bacteria. Appl Environ Microbiol 59, 1092-1098.
    [Google Scholar]
  32. Summers, M. L., Dentom, M. C. & McDermott, T. R. ( 1999; ). Genes coding for phosphotransacetylase and acetate kinase in Sinorhizobium meliloti are in an operon that is inducible by phosphate stress and controlled by PhoB. J Bacteriol 181, 2217-2224.
    [Google Scholar]
  33. Tettelin, H., Saunders, N. J., Heidelberg, J. & 39 other authors ( 2000; ). Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815.[CrossRef]
    [Google Scholar]
  34. Tonhazy, N. E. & Pelczar, M. J. ( 1953; ). Oxidation of amino acids and compounds associated with the tricarboxylic acid cycle by Neisseria gonorrhoeae. J Bacteriol 65, 368-377.
    [Google Scholar]
  35. Wanner, B. L. ( 1992; ). Is cross regulation by phosphorylation of two-component response regulator proteins important in bacteria? J Bacteriol 174, 2053-2058.
    [Google Scholar]
  36. Wanner, B. L. & Wilmes-Reisenberg, M. R. ( 1992; ). Involvement of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in control of the phosphate regulon in Escherichia coli. J Bacteriol 174, 2124-2130.
    [Google Scholar]
  37. Willison, J. C. ( 1988; ). Pyruvate and acetate metabolism in the photosynthetic bacterium Rhodobacter capsulatus. J Gen Microbiol 134, 2429-2439.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-6-1473
Loading
/content/journal/micro/10.1099/00221287-147-6-1473
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error