1887

Abstract

The outer surface of consists of a two-dimensional crystalline protein lattice layer (S-layer). A fraction of the LPS has an O antigen polymer attached to the core to form a ‘smooth’ LPS (S-LPS), which is required for attachment of the protein S-layer to the outer-membrane surface. A method to screen for strains defective in LPS production, based on loss ofS-layer attachment, was developed and applied to libraries of transposon-generated mutants. Eighteen distinct insertions were found with transposon interruptions in genes affecting S-LPS production, 12 of which were located near the S-layer subunit protein gene, , and its transporter genes. Sequence adjacent to transposon insertion points was determined and used to search a genome database. Twelve ORFs likely to be involved in S-LPS synthesis were identified. Seven of the predicted ORFs were linked to . Six of the putative genes had identity with proteins involved in synthesis of sugar residues, including five predicted to make perosamine. The remaining six ORFs were similar to glycosyltransferases involved in forming linkages between sugar residues in the O antigen, while one may be a transcription repressor. Other chemical and preliminary proton NMR studies of the S-LPS O antigen indicate that it contains an -acetylated 4,6-dideoxy-4-aminohexose, but is not assembled as a simple, uniform homopolymer, consisting of several different linkages between sugar residues. The ORFs described here include homologues of all the enzymes involved in the synthesis of -acetylperosamine, a 4,6-dideoxy-4-aminohexose. Overall, the data are consistent with the hypothesis that the O antigen of S-LPS consists primarily of -acetylperosamine residues polymerized with multiple anomeric linkages.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-6-1451
2001-06-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/6/1471451a.html?itemId=/content/journal/micro/10.1099/00221287-147-6-1451&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  2. Annunziato P. W., Wright L. F., Vann W. F., Silver R. P.. 1995; Nucleotide sequence and genetic analysis of the neuD and neuB genes in region 2 of the polysialic acid gene cluster of Escherichia coli K1. J Bacteriol177:312–319
    [Google Scholar]
  3. Awram P., Smit J.. 1998; The Caulobacter crescentus paracrystalline S-layer protein is secreted by an ABC transporter (type I) secretion apparatus. J Bacteriol180:3062–3069
    [Google Scholar]
  4. Bechthold A., Sohng J. K., Smith T. M., Chu X., Floss H. G.. 1995; Identification of Streptomyces violaceoruber Tu22 genes involved in the biosynthesis of granaticin. Mol Gen Genet248:610–620[CrossRef]
    [Google Scholar]
  5. Bik E. M., Bunschoten A. E., Willems R. J., Chang A. C., Mooi F. R.. 1996; Genetic organization and functional analysis of the otn DNA essential for cell-wall polysaccharide synthesis in Vibrio cholerae O139. Mol Microbiol20:799–811[CrossRef]
    [Google Scholar]
  6. Bingle W. H., Nomellini J. F., Smit J.. 1997a; Linker mutagenesis of the Caulobacter crescentus S-layer protein: toward a definition of an N-terminal anchoring region and a C-terminal secretion signal and the potential for heterologous protein secretion. J Bacteriol179:601–611
    [Google Scholar]
  7. Bingle W. H., Nomellini J. F., Smit J.. 1997b; Cell surface display of a Pseudomonas aeruginosa PAK pilin peptide within the paracrystalline S-layer of Caulobacter crescentus . Mol Microbiol26:277–288[CrossRef]
    [Google Scholar]
  8. Boot H. J., Pouwels P. H.. 1996; Expression, secretion and antigenic variation of bacterial S-layer proteins. Mol Microbiol21:1117–1123[CrossRef]
    [Google Scholar]
  9. Canter Cremers H., Spaink H. P., Wijfjes A. H., Pees E., Wijffelman C. A., Okker R. J., Lugtenberg B. J.. 1989; Additional nodulation genes on the Sym plasmid of Rhizobium leguminosarum biovar viciae. Plant Mol Biol 13. 163–174[CrossRef]
  10. Currie H. L., Lightfoot J., Lam J. S.. 1995; Prevalence of gca , a gene involved in synthesis of A-band common antigen polysaccharide in Pseudomonas aeruginosa. . Clin Diagn Lab Immunol2:554–562
    [Google Scholar]
  11. Drummelsmith J., Whitfield C.. 1999; Gene products required for surface expression of the capsular form of the group 1 K antigen in Escherichia coli (O9a: K30). Mol Microbiol31:1321–1332[CrossRef]
    [Google Scholar]
  12. Fallarino A., Mavrangelos C., Stroeher U. H., Manning P. A.. 1997; Identification of additional genes required for O-antigen biosynthesis in Vibrio cholerae O1. J Bacteriol179:2147–2153
    [Google Scholar]
  13. Fisher J. A., Smit J., Agabian N.. 1988; Transcriptional analysis of the major surface array gene of Caulobacter crescentus. J Bacteriol170:4706–4713
    [Google Scholar]
  14. Fry B. N., Korolik V., Pennings M. T., Zalm R., Teunis B. J., Coloe P. J., ten Brinke J. A., van der Zeijst B. A.. 1998; The lipopolysaccharide biosynthesis locus of Campylobacter jejuni 81116. Microbiology144:2049–2061[CrossRef]
    [Google Scholar]
  15. Geremia R. A., Petroni E. A., Ielpi L., Henrissat B.. 1996; Towards a classification of glycosyltransferases based on amino acid sequence similarities: prokaryotic alpha-mannosyltransferases. Biochem J318:1333–1338
    [Google Scholar]
  16. Gilchrist A., Smit J.. 1991; Transformation of freshwater and marine caulobacters by electroporation. J Bacteriol173:921–925
    [Google Scholar]
  17. Henkin T. M., Grundy F. J., Nicholson W. L., Chambliss G. H.. 1991; Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans -acting gene product homologous to the Escherichia coli lacI and galR repressors. Mol Microbiol5:575–584[CrossRef]
    [Google Scholar]
  18. Kido N., Sugiyama T., Yokochi T., Kobayashi H., Okawa Y.. 1998; Synthesis of Escherichia coli O9a polysaccharide requires the participation of two domains of WbdA, a mannosyltransferase encoded within the wb* gene cluster. Mol Microbiol27:1213–1221[CrossRef]
    [Google Scholar]
  19. Linton K. J., Jarvis B. W., Hutchinson C. R.. 1995; Cloning of the genes encoding thymidine diphosphoglucose 4,6-dehydratase and thymidine diphospho-4-keto-6-deoxyglucose 3,5-epimerase from the erythromycin-producing Saccharopolyspora erythraea . Gene153:33–40[CrossRef]
    [Google Scholar]
  20. Liu D., Haase A. M., Lindqvist L., Lindberg A. A., Reeves P. R.. 1993; Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica : identification and characterization of transferase genes of groups B, C2, and E1. J Bacteriol175:3408–3413
    [Google Scholar]
  21. Malakooti J., Wang S. P., Ely B.. 1995; A consensus promoter sequence for Caulobacter crescentus genes involved in biosynthetic and housekeeping functions. J Bacteriol177:4372–4376
    [Google Scholar]
  22. Martin V. J., Mohn W. W.. 1999; An alternative inverse PCR (IPCR) method to amplify DNA sequences flanking Tn 5 transposon insertions. J Microbiol Methods35:163–166[CrossRef]
    [Google Scholar]
  23. Nikaido H., Vaara M.. 1985; Molecular basis of bacterial outer membrane permeability. Microbiol Rev49:1–32
    [Google Scholar]
  24. Poindexter J. S.. 1981; The caulobacters: ubiquitous unusual bacteria. Microbiol Rev45:123–179
    [Google Scholar]
  25. Ravenscroft N., Walker S. G., Dutton G. G., Smit J.. 1991; Identification, isolation, and structural studies of extracellular polysaccharides produced by Caulobacter crescentus. . J Bacteriol 173:5677–5684
    [Google Scholar]
  26. Riley R. G., Kolodziej B. J.. 1976; Pathway of glucose catabolism in Caulobacter crescentus. . Microbios 16:219–226
    [Google Scholar]
  27. Rocchetta H. L., Burrows L. L., Pacan J. C., Lam J. S.. 1998; Three rhamnosyltransferases responsible for assembly of the A-band d-rhamnan polysaccharide in Pseudomonas aeruginosa : a fourth transferase, WbpL, is required for the initiation of both A-band and B-band lipopolysaccharide synthesis. Mol Microbiol28:1103–1119 erratum 30, 1131[CrossRef]
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Schnaitman C. A., Klena J. D.. 1993; Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev57:655–682
    [Google Scholar]
  30. Smit J., Agabian N.. 1984; Cloning of the major protein of the Caulobacter crescentus periodic surface layer: detection and characterization of the cloned peptide by protein expression assays. J Bacteriol160:1137–1145
    [Google Scholar]
  31. Smit J., Grano D. A., Glaeser R. M., Agabian N.. 1981; Periodic surface array in Caulobacter crescentus : fine structure and chemical analysis. J Bacteriol146:1135–1150
    [Google Scholar]
  32. Stevenson G., Andrianopoulos K., Hobbs M., Reeves P. R.. 1996; Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol178:4885–4893
    [Google Scholar]
  33. Stroeher U. H., Karageorgos L. E., Brown M. H., Morona R., Manning P. A.. 1995; A putative pathway for perosamine biosynthesis is the first function encoded within the rfb region of Vibrio cholerae O1. Gene166:33–42[CrossRef]
    [Google Scholar]
  34. Sugiyama T., Kido N., Kato Y., Koide N., Yoshida T., Yokochi T.. 1998; Generation of Escherichia coli O9a serotype, a subtype of E. coli O9, by transfer of the wb* gene cluster of Klebsiella O3 into E. coli via recombination. J Bacteriol180:2775–2778
    [Google Scholar]
  35. Vaara M.. 1992; Eight bacterial proteins, including UDP- N -acetylglucosamine acyltransferase (LpxA) and three other transferases of Escherichia coli , consist of a six-residue periodicity theme. FEMS Microbiol Lett76:249–254
    [Google Scholar]
  36. Vuorio R., Harkonen T., Tolvanen M., Vaara M.. 1994; The novel hexapeptide motif found in the acyltransferases LpxA and LpxD of lipid A biosynthesis is conserved in various bacteria. FEBS Lett337:289–292[CrossRef]
    [Google Scholar]
  37. Walker S. G., Smith S. H., Smit J.. 1992; Isolation and comparison of the paracrystalline surface layer proteins of freshwater caulobacters. J Bacteriol174:1783–1792
    [Google Scholar]
  38. Walker S. G., Karunaratne D. N., Ravenscroft N., Smit J.. 1994; Characterization of mutants of Caulobacter crescentus defective in surface attachment of the paracrystalline surface layer. J Bacteriol176:6312–6323
    [Google Scholar]
  39. Wandersman C., Létoffé S.. 1993; Involvement of lipopolysaccharide in the secretion of Escherichia coli alpha-haemolysin and Erwinia chrysanthemi proteases. Mol Microbiol7:141–150[CrossRef]
    [Google Scholar]
  40. Wang L., Reeves P. R.. 1998; Organization of Escherichia coli O157 O antigen gene cluster and identification of its specific genes. Infect Immun66:3545–3551
    [Google Scholar]
  41. Ward M. J., Bell A. W., Hamblin P. A., Packer H. L., Armitage J. P.. 1995; Identification of a chemotaxis operon with two cheY genes in Rhodobacter sphaeroides. . Mol Microbiol17:357–366[CrossRef]
    [Google Scholar]
  42. Whitfield C.. 1995; Biosynthesis of lipopolysaccharide O antigens. Trends Microbiol3:178–185[CrossRef]
    [Google Scholar]
  43. Yang L. Y., Pei Z. H., Fujimoto S., Blaser M. J.. 1992; Reattachment of surface array proteins to Campylobacter fetus cells. J Bacteriol174:1258–1267
    [Google Scholar]
  44. Yun C., Ely B., Smit J.. 1994; Identification of genes affecting production of the adhesive holdfast of a marine caulobacter. J Bacteriol176:796–803
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-6-1451
Loading
/content/journal/micro/10.1099/00221287-147-6-1451
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error