1887

Abstract

Septins constitute a cytoskeletal structure that is conserved in eukaryotes. In , the Cdc3, Cdc10, Cdc11, Cdc12 and Shs1/Sep7 septins assemble as a ring that marks the cytokinetic plane throughout the budding cycle. This structure participates in different aspects of morphogenesis, such as selection of cell polarity, localization of chitin synthesis, the switch from hyperpolar to isotropic bud growth after bud emergence and the spatial regulation of septation. The septin cytoskeleton assembles at the pre-bud site before bud emergence, remains there during bud growth and duplicates at late mitosis eventually disappearing after cell separation. Using a septin-GFP fusion and time-lapse confocal microscopy, we have determined that septin dynamics are maintained in budding zygotes and during unipolar synchronous growth in pseudohyphae. By means of specific cell cycle arrests and deregulation of cell cycle controls we show that septin assembly is dependent on G1 cyclin/Cdc28-mediated cell cycle signals and that the small GTPase Cdc42, but not Rho1, are essential for this event. However, during bud growth, the septin ring shapes a bud-neck-spanning structure that is unaffected by failures in the regulation of mitosis, such as activation of the DNA repair or spindle assembly checkpoints or inactivation of the anaphase-promoting complex (APC). At the end of the cell cycle, the splitting of the ring into two independent structures depends on the function of the mitotic exit network in which the protein phosphatase Cdc14 participates. Our data support a role of cell cycle control mechanisms in the regulation of septin dynamics to accurately coordinate morphogenesis throughout the budding process in yeast.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-6-1437
2001-06-01
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/6/1471437a.html?itemId=/content/journal/micro/10.1099/00221287-147-6-1437&mimeType=html&fmt=ahah

References

  1. Barral Y., Parra M., Bidlingmaier S., Snyder M.. 1999; Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast. Genes Dev13:176–187[CrossRef]
    [Google Scholar]
  2. Barral Y., Mermall V., Mooseker M. S., Snyder M.. 2000; Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol Cell5:841–851[CrossRef]
    [Google Scholar]
  3. Beites C. L., Xie H., Bowser R., Trimble W. S.. 1999; The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nat Neurosci5:434–439[CrossRef]
    [Google Scholar]
  4. Bi E., Maddox P., Lew D. J., Salmon E. D., McMillan J. N., Yeh E., Pringle J. R.. 1998; Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis. J Cell Biol142:1301–1312[CrossRef]
    [Google Scholar]
  5. Botstein D., Amberg D., Mulholland J., Huffaker T., Adams A., Drubin D., Stearns T.. 1997; The yeast cytoskeleton. In The Molecular and Cellular Biology of the Yeast Saccharomyces cerevisiae . pp1–90 Edited by Pringle J. R.. Broach J. R., Jones E. W.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  6. Byers B., Goetsch L.. 1976; A highly ordered ring of membrane-associated filaments in budding yeast. J Cell Biol69:717–721[CrossRef]
    [Google Scholar]
  7. Cabib E., Drgonová J., Drgon T.. 1998; Role of small G proteins in yeast cell polarization and wall biosynthesis. Annu Rev Biochem67:307–333[CrossRef]
    [Google Scholar]
  8. Carroll C. W., Altman R., Schieltz D., Yates J. R., Kellogg D.. 1998; The septins are required for the mitosis-specific activation of the Gin4 kinase. J Cell Biol143:709–717[CrossRef]
    [Google Scholar]
  9. Chant J.. 1994; Cell polarity in yeast. Trends Genet10:328–333[CrossRef]
    [Google Scholar]
  10. Chant J., Mischke M., Mitchell E., Herskowitz I., Pringle J. R.. 1995; Role of Bud3p in producing the axial budding pattern of yeast. J Cell Biol129:767–778[CrossRef]
    [Google Scholar]
  11. Cid V. J., Cenamor R., Molina M., Nombela C., Adamiková L., Sánchez M.. 1998a; Cell integrity and morphogenesis in a budding yeast septin mutant. Microbiology144:3463–3474[CrossRef]
    [Google Scholar]
  12. Cid V. J., Cenamor R., Nombela C., Sánchez M.. 1998b; A mutation in the Rho1-GAP-encoding gene BEM2 of Saccharomyces cerevisiae affects morphogenesis and cell wall functionality. Microbiology144:25–36[CrossRef]
    [Google Scholar]
  13. Cvrcková F., De Virgilio C., Manser E., Pringle J. R., Nasmyth K.. 1995; Ste20-like protein kinases are required for normal localisation of cell growth and for cytokinesis in budding yeast. Genes Dev9:1817–1830[CrossRef]
    [Google Scholar]
  14. De Marini D. J., Adams A. E. M., Fares H., DeVirgilio C., Valle G., Chuang J. S., Pringle J. R.. 1997; A septin-based hierarchy of proteins required for localised deposition of chitin in Saccharomyces cerevisiae cell wall. J Cell Biol139:75–93[CrossRef]
    [Google Scholar]
  15. De Virgilio C., De Marini D. J., Pringle J. R.. 1996; SPR28 , a sixth member of the septin gene family in Saccharomyces cerevisiae that is expressed specifically in sporulating cells. Microbiology142:2897–2905[CrossRef]
    [Google Scholar]
  16. Drgonová J., Drgon T., Tanaka K., Kollar R., Chen G. C., Ford R. A., Chan C. S., Takai Y., Cabib E.. 1996; Rho1p, a yeast protein at the interface between cell polarization and morphogenesis. Science272:277–279[CrossRef]
    [Google Scholar]
  17. Fares H., Peifer M., Pringle J. R.. 1995; Localisation and possible functions of Drosophila septins. Mol Biol Cell6:1843–1859[CrossRef]
    [Google Scholar]
  18. Fares H., Goetsch L., Pringle J. R.. 1996; Identification of a developmentally regulated septin and involvement of the septins in spore formation in Saccharomyces cerevisiae . J Cell Biol132:399–411[CrossRef]
    [Google Scholar]
  19. Field C. M., Kellogg D.. 1999; Septins: cytoskeletal polymers or signalling GTPases?. Trends Cell Biol10:387–394
    [Google Scholar]
  20. Field C. M., al-Awar O., Rosenblatt J., Wong M. L., Alberts B., Mitchison T. J.. 1996; A purified Drosophila septin complex forms filaments and exhibits GTPase activity. J Cell Biol133:605–616[CrossRef]
    [Google Scholar]
  21. Flescher E. G., Madden K., Snyder M.. 1993; Components required for cytokinesis are important for bud site selection in yeast. J Cell Biol122:373–386[CrossRef]
    [Google Scholar]
  22. Ford S. K., Pringle J. R.. 1991; Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localisation of the CDC11 gene product and the timing of events at the budding site. Dev Genet12:281–292[CrossRef]
    [Google Scholar]
  23. Frazier J. A., Wong M. L., Longtine M. S., Pringle J. R., Mann M., Mitchison T. J., Field C.. 1998; Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function. J Cell Biol143:737–749[CrossRef]
    [Google Scholar]
  24. Garvik B., Carson M., Hartwell L.. 1995; Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol15:6128–6138
    [Google Scholar]
  25. Gietz R. D., Sugino A.. 1988; New yeast– Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene74:527–534[CrossRef]
    [Google Scholar]
  26. Haarer B., Pringle J. R.. 1987; Immunofluorescence localisation of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10 nm filaments in the mother-bud neck. Mol Cell Biol7:3678–3687
    [Google Scholar]
  27. Halme A., Michelitch M., Mitchell E. L., Chant J.. 1996; Bud10p directs axial cell polarization in budding yeast and resembles a transmembrane receptor. Curr Biol6:570–579[CrossRef]
    [Google Scholar]
  28. Hartwell L. H.. 1971; Genetic control of cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res69:265–276[CrossRef]
    [Google Scholar]
  29. Hartwell L. H., Culotti J., Pringle J. R., Reid B. J.. 1974; Genetic control of the cell division cycle in yeast. Science246:629–634
    [Google Scholar]
  30. Ito H., Fukada Y., Murata K., Kimura A.. 1983; Transformation of intact yeast with alkali cations. J Bacteriol153:163–168
    [Google Scholar]
  31. Jaspersen S. L., Charles J. F., Tinker-Kulberg R. L., Morgan D. O.. 1998; A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae . Mol Biol Cell9:2803–2817[CrossRef]
    [Google Scholar]
  32. Jiménez J., Cid V. J., Cenamor R., Yuste M., Molero G., Nombela C., Sanchez M.. 1998; Morphogenesis beyond cytokinetic arrest in Saccharomyces cerevisiae. . J Cell Biol143:1617–1634[CrossRef]
    [Google Scholar]
  33. Johnson D. I.. 1999; Cdc42: an essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol Mol Biol Rev63:54–105
    [Google Scholar]
  34. Johnson D. I., Pringle J. R.. 1990; Molecular characterization of CDC42 , a Saccharomyces cerevisiae gene involved in the development of cell polarity. J Cell Biol111:143–152[CrossRef]
    [Google Scholar]
  35. Johnson E. S., Blobel G.. 1999; Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J Cell Biol147:981–993[CrossRef]
    [Google Scholar]
  36. Kim H. B., Haarer B. K., Pringle J. R.. 1991; Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localisation of the CDC3 gene product and the timing of events at the budding site. J Cell Biol112:535–544[CrossRef]
    [Google Scholar]
  37. Kinoshita M., Kumar S., Mizoguchi A., Ide C., Kinoshita A., Haraguchi T., Hiraoka Y., Noda M.. 1997; Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev11:1535–1547[CrossRef]
    [Google Scholar]
  38. Kron S. J., Styles C. A., Fink G. R.. 1994; Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. . Mol Biol Cell 5:1003–1022[CrossRef]
    [Google Scholar]
  39. Lew D. J., Reed S. I.. 1993; Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J Cell Biol120:1305–1320[CrossRef]
    [Google Scholar]
  40. Lew D. J., Reed S. I.. 1995; Cell cycle control of morphogenesis in the budding yeast. Curr Opin Genet Dev5:17–23[CrossRef]
    [Google Scholar]
  41. Lippincott J., Li R.. 1998; Sequential assembly of myosin II, an IQGAP-like protein, and filamentous actin to a ring structure involved in budding yeast cytokinesis. J Cell Biol140:355–366[CrossRef]
    [Google Scholar]
  42. Longhese M. P., Foiani M., Muzi-Falconi M., Lucchini G., Plevani P.. 1998; DNA damage checkpoint in budding yeast. EMBO J17:5525–5528[CrossRef]
    [Google Scholar]
  43. Longtine S. M., Valencik M. L., Al-Awar O. S., Fares H., De Virgilio C., Pringle J. R., de Marini D. J.. 1996; The septins: roles in cytokinesis and other processes. Curr Opin Cell Biol8:106–119[CrossRef]
    [Google Scholar]
  44. McMillan J. N., Longtine M. S., Sia R. A., Theesfeld C. L., Bardes E. S., Pringle J. R., Lew D. J.. 1999; The morphogenesis checkpoint in Saccharomyces cerevisiae : cell cycle control of Swe1p degradation by Hsl1p and Hsl7p. Mol Cell Biol10:6929–6939
    [Google Scholar]
  45. Martı́n H., Ruiz C., Nombela C., Molina M., Rodrı́guez-Pachón J. M.. 2000; Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae . J Biol Chem275:1511–1519[CrossRef]
    [Google Scholar]
  46. Mino A., Tanaka K., Kamei T., Umikawa M., Fujiwara T., Takai Y.. 1998; Shs1p: a novel member of the septin that interacts with Spa2p, involved in polarized growth in Saccharomyces cerevisiae . Biochem Biophys Res Commun251:732–736[CrossRef]
    [Google Scholar]
  47. Neufeld T. P., Rubin G. M.. 1994; The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell77:371–379[CrossRef]
    [Google Scholar]
  48. Nugent C. I., Hughes T. R., Lue N. F., Lundblad V.. 1996; Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science274:249–252[CrossRef]
    [Google Scholar]
  49. Peterson J., Zheng Y., Bender L., Myers A., Cerione R., Bender A.. 1994; Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast. J Cell Biol127:1395–1406[CrossRef]
    [Google Scholar]
  50. Qadota H., Python C. P., Inoue S. B., Arisawa M., Anraku Y., Zheng Y., Watanabe T., Levin D. E., Ohya Y.. 1996; Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-beta-glucan synthase. Science272:279–281[CrossRef]
    [Google Scholar]
  51. Richman T. J., Sawyer M. M., Johnson D. I.. 1999; The Cdc42p GTPase is involved in a G2/M morphogenetic checkpoint regulating the apical-isotropic switch and nuclear division in yeast. J Biol Chem274:16861–16870[CrossRef]
    [Google Scholar]
  52. Roemer T., Madden K., Chang J., Snyder M.. 1996; Selection of axial growth sites in yeast requires Axl2p, a novel plasma membrane glycoprotein. Genes Dev10:777–793[CrossRef]
    [Google Scholar]
  53. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  54. Sanders S. L., Herskowitz I.. 1996; The Bud4p protein of yeast, required for axial budding, is localised to the mother/bud neck in a cell cycle-dependent manner. J Cell Biol134:413–427[CrossRef]
    [Google Scholar]
  55. Schmidt A., Bickle M., Beck T., Hall M. N.. 1997; The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2 . Cell88:531–542[CrossRef]
    [Google Scholar]
  56. Schweitzer B., Philippsen P.. 1991; CDC15 , an essential cell cycle gene in Saccharomyces cerevisiae , encodes a protein kinase domain. Yeast3:265–273
    [Google Scholar]
  57. Shaw S. L., Yeh E., Maddox P., Salmon E. D., Bloom K.. 1997; Astral microtubule dynamics in yeast: a microtubule-based searching mechanism for spindle orientation and nuclear migration into the bud. J Cell Biol139:985–994[CrossRef]
    [Google Scholar]
  58. Sherman F.. 1991; Getting started with yeast. Methods Enzymol194:3–21
    [Google Scholar]
  59. Sherman F., Hicks J.. 1991; Micromanipulation and dissection of asci. Methods Enzymol194:21–37
    [Google Scholar]
  60. Shou W., Seol J. H., Shevchenko A.. 7 other authors 1999; Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell97:233–244[CrossRef]
    [Google Scholar]
  61. Shulewitz M. J., Inouye C. J., Thorner J.. 1999; Hsl7 localises to the septin ring and serves as an adapter in a regulatory pathway that relieves tyrosine phosphorylation of the Cdc28 protein kinase in Saccharomyces cerevisiae . Mol Cell Biol10:7123–7137
    [Google Scholar]
  62. Slater M. L., Bowers B., Cabib E.. 1985; Formation of septum-like structures at locations remote from the budding sites in cytokinesis-defective mutants of Saccharomyces cerevisiae . J Bacteriol162:763–767
    [Google Scholar]
  63. Straight A. F., Murray A. W.. 1997; The spindle assembly checkpoint in budding yeast. Methods Enzymol283:425–440
    [Google Scholar]
  64. Surana U., Amon A., Dowzer C., McGrew J., Byers B., Nasmyth K.. 1993; Destruction of yeast CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast . . EMBO J 12:1969–1978
    [Google Scholar]
  65. Takizawa P. A., DeRisi J. L., Wilhelm J. E., Vale R. D.. 2000; Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science290:341–344[CrossRef]
    [Google Scholar]
  66. Visintin R., Hwang E. S., Amon A.. 1999; Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature398:818–823[CrossRef]
    [Google Scholar]
  67. Waddle J. A., Karpova T. S., Waterston R. H., Cooper J. A.. 1996; Movement of cortical actin patches in yeast. J Cell Biol132:861–870[CrossRef]
    [Google Scholar]
  68. Wang Y., Burke D. J.. 1995; Checkpoint genes required to delay cell division in response to nocodazole respond to impaired kinetochore function in the yeast Saccharomyces cerevisiae. . Mol Cell Biol 12:6838–6844
    [Google Scholar]
  69. Yamochi W., Tanaka K., Nonaka H., Maeda A., Musha T., Takai Y.. 1994; Growth site localisation of Rho1 small GTP-binding protein and its involvement in bud formation in Saccharomyces cerevisiae . J Cell Biol125:1077–1093[CrossRef]
    [Google Scholar]
  70. Zhang J., Kong C., Xie H., McPherson P. S., Grinstein S., Trimble W. S.. 1999; Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Curr Biol9:1458–1467[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-6-1437
Loading
/content/journal/micro/10.1099/00221287-147-6-1437
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error