Visualization of by fluorescence hybridization (FISH) on whole-body sections of ticks and gerbil skin biopsies Free

Abstract

The objective of this study was to visualize borreliae directly in whole-body sections of by fluorescence hybridization (FISH). mono-infected or (ss)/ double-infected nymphs were fixed, embedded in cold polymerizing resin and sectioned. The same sample processing was applied to skin biopsies taken from a Mongolian gerbil after an infectious tick-bite. FISH was carried out using 16S-rRNA-directed, fluorescence-labelled oligonucleotide probes specific for the genus and specific within the group of Lyme borreliosis-associated genospecies ss, and . Sensitivity and specificity of the newly designed probes were evaluated using PCR, dot-blot hybridizations and FISH. Despite significant autofluorescence of certain tick tissues (which allowed good histological orientation within the sections), borreliae showing the typical spirochaetal morphotype were clearly visible in five out of six putatively infected ticks. These findings were confirmed by electron microscopy of ticks from the same infected batch as used for FISH. Attempts to produce ticks infected by two different genospecies were not successful. FISH on whole-body sections of resin-embedded ticks offers the possibility of visualizing and identifying borreliae within tick tissues. This technique has great potential for the investigation of the transmission of bacteria or other micro-organisms by arthropod vectors. Furthermore, clear visualization of single spirochaetes distributed along subcutaneous fat cell membranes in gerbil skin biopsies suggests that FISH might also be suitable for the detection of borreliae in clinical tissue specimens.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-6-1425
2001-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/6/1471425a.html?itemId=/content/journal/micro/10.1099/00221287-147-6-1425&mimeType=html&fmt=ahah

References

  1. Alm E. W., Oerther D. B., Larsen N., Stahl D. A., Raskin L. 1996; The oligonucleotide probe database. Appl Environ Microbiol 62:3557–3559
    [Google Scholar]
  2. Amann R., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. 1990; Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925
    [Google Scholar]
  3. Amann R., Snaidr J., Wagner M., Ludwig W., Schleifer K. H. 1996; In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol 178:3496–3500
    [Google Scholar]
  4. Barns S. M., Fundyga R. E., Jeffries M. W., Pace N. R. 1994; Remarkable archaeal diversity detected in a Yellowstone national park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613 [CrossRef]
    [Google Scholar]
  5. Benach J. L., Coleman J. L., Skinner R. A., Bosler E. M. (1987; Adult Ixodes dammini on rabbits: a hypothesis for the development and transmission of Borrelia burgdorferi . J Infect Dis 155:1300–1306 [CrossRef]
    [Google Scholar]
  6. Berlau J., Junker U., Groh A., Straube E. 1998; In situ hybridisation and direct fluorescence antibodies for the detection of Chlamydia trachomatis in synovial tissue from patients with reactive arthritis. J Clin Pathol 51:803–806 [CrossRef]
    [Google Scholar]
  7. Burgdorfer W., Barbour A. G., Hayes S. F., Benach J. L., Grunwaldt E., Davis J. P. 1982; Lyme disease – a tick-borne spirochetosis?. Science 216:1317–1319 [CrossRef]
    [Google Scholar]
  8. Burgdorfer W., Hayes S. F., Corwin D. 1989; Pathophysiology of the Lyme disease spirochete, Borrelia burgdorferi , in ixodid ticks. Rev Infect Dis 11, suppl. 6:S1442–S1450
    [Google Scholar]
  9. Cobb B. D., Clarkson J. M. 1994; A simple procedure for optimising the polymerase chain reaction (PCR) using modified Taguchi methods. Nucleic Acids Res 22:3801–3805 [CrossRef]
    [Google Scholar]
  10. Coleman J. L., Gebbia J. A., Piesman J., Degen J. L., Bugge T. H., Benach J. L. 1997; Plasminogen is required for efficient dissemination of B. burgdorferi in ticks and for enhancement of spirochetemia in mice. Cell 89:1111–1119 [CrossRef]
    [Google Scholar]
  11. Fingerle V., Hauser U., Liegl G., Branislav P., Preac-Mursic V., Wilske B. 1995; Expression of outer surface proteins A and C of Borrelia burgdorferi in Ixodes ricinus.. J Clin Microbiol 33:1867–1869
    [Google Scholar]
  12. Forsgren J., Samuelson A., Ahlin A., Jonasson J., Rynnel-Dagoo B., Lindberg A. 1994; Haemophilus influenzae resides and multiplies intracellularly in human adenoid tissue as demonstrated by in situ hybridization and bacterial viability assay. Infect Immun 62:673–679
    [Google Scholar]
  13. Fritsche T. R., Horn M., Seyedirashti S., Gautom R. K., Schleifer K. H., Wagner M. 1999; In situ detection of novel bacterial endosymbionts of Acanthamoeba spp. phylogenetically related to members of the order Rickettsiales. . Appl Environ Microbiol 65:206–212
    [Google Scholar]
  14. Gern L., Lebet N., Moret J. 1996; Dynamics of Borrelia burgdorferi infection in nymphal Ixodes ricinus ticks during feeding. Exp Appl Acarol 20:649–658 [CrossRef]
    [Google Scholar]
  15. Gray J. S., Robertson J. N., Key S. 2000; Limited role of rodents as reservoirs of Borrelia burgdorferi sensu lato in Ireland. Eur J Epidemiol 16:101–103 [CrossRef]
    [Google Scholar]
  16. Harmsen H. J., Wildeboer-Veloo A. C., Raangs G. C., Wagendorp A. A., Klijn N., Bindels J. G., Welling G. W. 2000; Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30:61–67 [CrossRef]
    [Google Scholar]
  17. Hogardt M., Trebesius K., Geiger A. M., Hornef M., Rosenecker J., Heesemann J. 2000; Specific and rapid detection by fluorescent in situ hybridization of bacteria in clinical samples obtained from cystic fibrosis patients. J Clin Microbiol 38:818–825
    [Google Scholar]
  18. Humair P. F., Rais O., Gern L. 1999; Transmission of Borrelia afzelii from Apodemus and Clethrionomys voles to Ixodes ricinus ticks: differential transmission pattern and overwintering maintenance. Parasitology 118:33–42 [CrossRef]
    [Google Scholar]
  19. Jansen G. J., Wildeboer-Veloo A. C. M., Tonk R. H. J., Franks A. H., Welling G. W. 1999; Development and validation of an automated, microscopy-based method for enumeration of groups of intestinal bacteria. J Microbiol Methods 37:215–221 [CrossRef]
    [Google Scholar]
  20. Kahl O., Janetzki C., Gray J. S., Stein J., Bauch R. J. (1992; Tick infection rates with Borrelia: Ixodes ricinus versus Haemaphysalis concinna and Dermacentor reticulatus in two locations in eastern Germany. Med Vet Entomol 6:363–366 [CrossRef]
    [Google Scholar]
  21. Kahl O., Janetzki-Mittmann C., Gray J. S., Jonas R., Stein J., de Boer R. 1998a; Risk of infection with Borrelia burgdorferi sensu lato for a host in relation to the duration of nymphal Ixodes ricinus feeding and the method of tick removal. Zentbl Bakteriol 287:41–52 [CrossRef]
    [Google Scholar]
  22. Kahl O., Gern L., Gray J. S., Guy E. C., Jongejan F., Kirstein F., Kurtenbach K., Rijpkema S. G. T., Stanek G. 1998b; Detection of Borrelia burgdorferi sensu lato in ticks: immunofluorescence assay versus polymerase chain reaction. Zentbl Bakteriol 287:205–210 [CrossRef]
    [Google Scholar]
  23. Korenberg E. I., Moskvitina H. G. 1996; Interrelationships between different Borrelia genospecies and their principal vectors. J Vector Ecol 21:178–185
    [Google Scholar]
  24. Kurtenbach K., Peacey M., Rijpkema S. G. T., Hoodless A. N., Nuttall P. A., Randolph S. E. (1998; Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl Environ Microbiol 64:1169–1174
    [Google Scholar]
  25. Lebet N., Gern L. 1994; Histological examination of Borrelia burgdorferi infections in unfed Ixodes ricinus nymphs. Exp Appl Acarol 18:177–183 [CrossRef]
    [Google Scholar]
  26. Lee S. H., Malone C., Kemp P. F. 1993; Use of multiple 16S rRNA-targeted fluorescent probes to increase signal strength and measure cellular RNA from natural planktonic bacteria. Mar Ecol Prog Ser 101:193–201 [CrossRef]
    [Google Scholar]
  27. Leuba-Garcia S., Kramer M. D., Wallich R., Gern L. 1994; Characterization of Borrelia burgdorferi isolated from different organs of Ixodes ricinus ticks collected in nature. Zentbl Bakteriol 280:468–475 [CrossRef]
    [Google Scholar]
  28. Leuba-Garcia S., Martinez R., Gern L. 1998; Expression of outer surface proteins A and C of Borrelia afzelii in Ixodes ricinus ticks and in the skin of mice. Zentbl Bakteriol 287:475–484 [CrossRef]
    [Google Scholar]
  29. Maiwald M. 1996 Einsatz molekularbiologischer Methoden in der mikrobiologischen Diagnostik am Beispiel von Legionella species, Borrelia burgdorferi und des Whipple-Bakteriums [Habilitationsschrift] Medizinische Fakultät Heidelberg, R.-Karls-Universität;
    [Google Scholar]
  30. Masuzawa T., Wilske B., Komikado T. 7 other authors 1996; Comparison of OspA serotypes for Borrelia burgdorferi sensu lato from Japan. Europe and North America. Microbiol Immunol 40:539–545 [CrossRef]
    [Google Scholar]
  31. Moter A., Göbel U. B. 2000; Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112 [CrossRef]
    [Google Scholar]
  32. Moter A., Leist G., Rudolph R., Schrank K., Choi B.-K., Wagner M., Göbel U. B. 1998; Fluorescence in situ hybridization shows spatial distribution of as yet uncultured treponemes in biopsies from digital dermatitis lesions. Microbiology 144:2459–2467 [CrossRef]
    [Google Scholar]
  33. Piesman J. 1995; Dispersal of the Lyme disease spirochete Borrelia burgdorferi to salivary glands of feeding nymphal Ixodes scapularis (Acari: Ixodidae). J Med Entomol 32:519–521 [CrossRef]
    [Google Scholar]
  34. Piesman J., Mather T. N., Telford S. R. 3rd, Spielman A. 1986; Concurrent Borrelia burgdorferi and Babesia microti infection in nymphal Ixodes dammini . J Clin Microbiol 24:446–447
    [Google Scholar]
  35. Piesman J., Maupin G. O., Campos E. G., Happ C. M. 1991; Duration of adult female Ixodes dammini attachment and transmission of Borrelia burgdorferi , with description of a needle aspiration isolation method. J Infect Dis 163:895–897 [CrossRef]
    [Google Scholar]
  36. Reynolds E. S. 1963; The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212 [CrossRef]
    [Google Scholar]
  37. Richter D., Endepols S., Ohlenbusch A., Eiffert H., Spielman A., Matuschka F.-R. 1999; Genospecies diversity of Lyme disease spirochetes in rodent reservoirs. Em Infect Dis 5:291–296 [CrossRef]
    [Google Scholar]
  38. Rijpkema S. G., Molkenboer M. J., Schouls L. M., Jongejan F., Schellekens J. F. 1995; Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by quaracterization of the amplified intergenetic spacer region between 5S and 23S rRNA genes. J Clin Microbiol 33:3091–3095
    [Google Scholar]
  39. Rijpkema S. G., Golubic D., Molkenboer M. J., Verbeek-De Fruif N., Schellekens J. F. 1996; Identification of four genomic groups of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in a Lyme borreliosis endemic region of northern Croatia. Exp Appl Acarol 20:23–30
    [Google Scholar]
  40. Rijpkema S. G., Tazelaar D. J., Molkenboer M. J., Noordhoek G. T., Plantinga G., Schouls L. M., Schellekens J. F. 1997; Detection of Borrelia afzelii, Borrelia burgdorferi sensu stricto, Borrelia garinii and group VS116 by PCR in skin biopsies of patients with erythema migrans and acrodermatitis chronica atrophicans. Clin Microbiol Infect 3:109–116 [CrossRef]
    [Google Scholar]
  41. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Schuppler M., Wagner M., Schön G., Göbel U. B. 1998; In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes. Microbiology 144:249–259 [CrossRef]
    [Google Scholar]
  43. de Silva A. M., Fikrig E. 1995; Growth and migration of Borrelia burgdorferi in Ixodes ticks during blood feeding. Am J Trop Med Hyg 53:397–404
    [Google Scholar]
  44. Snaidr J., Amann R., Huber I., Ludwig W., Schleifer K. H. (1997; Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63:2884–2896
    [Google Scholar]
  45. Stanek G., Klein J., Bittner R., Glogar D. 1990; Isolation of Borrelia burgdorferi from the myocardium of a patient with longlasting cardiomyopathy. New Engl J Med 322:249–252 [CrossRef]
    [Google Scholar]
  46. Trebesius K., Harmsen D., Rakin A., Schmelz J., Heesemann J. 1998; Development of rRNA-targeted PCR and in situ hybridization with fluorescently labelled oligonucleotides for detection of Yersinia species. J Clin Microbiol 36:2557–2564
    [Google Scholar]
  47. Wilske B., Preac-Mursic V., Jauris S., Soutschek E., Schwab E., Zumstein G., Göbel U. B., Graf B. 1993; An OspA serotyping system for Borrelia burgdorferi based on reactivity with monoclonal antibodies and OspA sequence analysis. J Clin Microbiol 31:340–350
    [Google Scholar]
  48. Wilske B., Jauris-Heipke S., Lobentanzer R., Pradel I., Preac-Mursic V., Soutschek E., Johnson R. C., Rössler D. 1995; Phenotypic analysis of outer surface protein C (OspC) of Borrelia burgdorferi sensu lato by monoclonal antibodies: relationship to genospecies and OspA serotype. J Clin Microbiol 33:103–109
    [Google Scholar]
  49. Zhu Z. 1998a; Histological observation on Borrelia burgdorferi growth in naturally infected female Ixodes ricinus. . Acarologia 2:11–22
    [Google Scholar]
  50. Zhu Z. 1998b; Borrelia burgdorferi in replete nymphal Ixodes ricinus : a localization study using light and electron microscopy. Acarologia 2:123–133
    [Google Scholar]
  51. Zung J. L., Lewengrub S., Rudzinska M. A., Spielman A., Telford S. R., Piesman J. 1989; Fine structural evidence for the penetration of the Lyme disease spirochete Borrelia burgdorferi through the gut and salivary tissue of Ixodes dammini.. Can J Zool 67:1737–1748 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-6-1425
Loading
/content/journal/micro/10.1099/00221287-147-6-1425
Loading

Data & Media loading...

Most cited Most Cited RSS feed