Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane Free

Abstract

With the recent success of the heterologous expression of mycobacterial antigens in corynebacteria, in addition to the importance of these bacteria in biotechnology and medicine, a better understanding of the structure of their cell envelopes was needed. A combination of molecular compositional analysis, ultrastructural appearance and freeze-etch electron microscopy study was used to arrive at a chemical model, unique to corynebacteria but consistent with their phylogenetic relatedness to mycobacteria and other members of the distinctive suprageneric actinomycete taxon. Transmission electron microscopy and chemical analyses showed that the cell envelopes of the representative strains of corynebacteria examined consisted of (i) an outer layer composed of polysaccharides (primarily a high-molecular-mass glucan and arabinomannans), proteins, which include the mycoloyltransferase PS1, and lipids; (ii) a cell wall glycan core of peptidoglycan-arabinogalactan which may contain other sugar residues and was usually esterified by corynomycolic acids; and (iii) a typical plasma membrane bilayer. Freeze-etch electron microscopy showed that most corynomycolate-containing strains exhibited a main fracture plane in their cell wall and contained low-molecular-mass porins, while the fracture occurred within the plasma membrane of strains devoid of both corynomycolate and pore-forming proteins. Importantly, in most strains, the amount of cell wall-linked corynomycolates was not sufficient to cover the bacterial surface; interestingly, the occurrence of a cell wall fracture plane correlated with the amount of non-covalently bound lipids of the strains. Furthermore, these lipids were shown to spontaneously form liposomes, indicating that they may participate in a bilayer structure. Altogether, the data suggested that the cell wall permeability barrier in corynebacteria involved both covalently linked corynomycolates and non-covalently bound lipids of their cell envelopes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-5-1365
2001-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/5/1471365a.html?itemId=/content/journal/micro/10.1099/00221287-147-5-1365&mimeType=html&fmt=ahah

References

  1. Abou-Zeid C., Voiland A., Michel G., Cocito C. 1982; Structure of the wall polysaccharide isolated from a group of corynebacteria. Eur J Biochem 128:363–370
    [Google Scholar]
  2. Aggerbeck L., Gulik-Krzywicki T. 1986; Studies of lipoproteins by freeze-fracture and etching electron microscopy. Methods Enzymol 128:457–472
    [Google Scholar]
  3. Barksdale L. 1959; Lysogenic conversions in bacteria. Bacteriol Rev 23:202–212
    [Google Scholar]
  4. Barksdale L. 1970; Corynebacterium diphtheriae and its relatives. Bacteriol Rev 34:378–422
    [Google Scholar]
  5. Barksdale L., Kim K.-S. 1977; Mycobacterium . Bacteriol Rev 41:217–372
    [Google Scholar]
  6. Barreau C., Bimet F., Kiredjian M., Rouillon N., Bizet C. 1993; Comparative chemotaxonomic studies of mycolic acid-free coryneform bacteria of human origin. J Clin Microbiol 31:2085–2090
    [Google Scholar]
  7. Benedetti E. L., Dunia I., Ludosky M. A., Man N. V., Trach D. D., Rastogi N., David H. L. 1984; Freeze-etching and freeze-fracture structural features of cell envelopes in mycobacteria and leprosy derived corynebacteria. Acta Leprol 95:237–248
    [Google Scholar]
  8. Benz R., Janko K., Boos W., Läuger P. 1978; Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. Biochim Biophys Acta. 511305–319 [CrossRef]
  9. Bligh E., Dyer W. J. 1959; Extraction des lipides. Can J Biochem Physiol 37:88–97
    [Google Scholar]
  10. Chami M., Bayan N., Dedieu J.-C., Leblon G., Shechter E., Gulik-Krzywicki T. 1995; Organisation of the outer layers of the cell envelope of Corynebacterium glutamicum : a combined freeze-etch electron microscopy and biochemical study. Biol Cell 83:219–229 [CrossRef]
    [Google Scholar]
  11. Christensen H., Garton N. J., Horobin R. W., Minnikin D. E., Barer M. R. 1999; Lipid domains of mycobacteria studied with fluorescent molecular probes. Mol Microbiol 31:1561–1572 [CrossRef]
    [Google Scholar]
  12. Collins M. D., Goodfellow M., Minnikin D. E. 1982; A survey of the structures of mycolic acids in Corynebacterium and related taxa. J Gen Microbiol 128:129–149
    [Google Scholar]
  13. Collins M. D., Burton R. A., Jones D. 1988; Corynebacterium amycolatum sp. nov., a new mycolic acid-less Corynebacterium species from human skin. FEMS Microbiol Lett 49:349–352 [CrossRef]
    [Google Scholar]
  14. Coyle M. B., Lipsky B. A. 1990; Coryneform bacteria in infectious diseases: clinical and laboratory aspects. Clin Microbiol Rev 3:227–246
    [Google Scholar]
  15. Coyle M. B., Leonard R. B., Nowowiejski D. K., Finn D. J. 1993; Evidence of multiple taxa within commercially available reference strains of Corynebacterium xerosis. J Clin Microbiol 31:1788–1793
    [Google Scholar]
  16. Daffé M. Draper P. 1998; The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203
    [Google Scholar]
  17. Daffé M., Lanéelle M.-A. Asselineau C., David H. L, Lévy-Frébault V. 1983; Intérêt taxonomique des acides gras des Mycobactéries: proposition d’une méthode d’analyse. Ann Microbiol 134B:241–256
    [Google Scholar]
  18. Daffé M. Brennan P. J., McNeil M. 1990; Predominant structural features of the cell wall arabinogalactan of Mycobacterium tuberculosis as revealed through characterization of oligoglycosyl alditol fragments by gas chromatography/mass spectrometry and by1H and 13C NMR analyses. J Biol Chem 265:6734–6743
    [Google Scholar]
  19. Daffé M., McNeil M. Brennan P. J. 1993; Major structural features of the cell wall arabinogalactans of Mycobacterium , Rhodococcus and Nocardia . Carbohydr Res 249:383–394 [CrossRef]
    [Google Scholar]
  20. Dittmer J. C. F., Lester R. L. 1964; A simple specific spray for the detection of phospholipids on thin layer chromatography. J Lipid Res 5:126–127
    [Google Scholar]
  21. Draper P. 1982; The anatomy of Mycobacteria. In The Biology of the Mycobacteria pp 9–49 Edited by Ratledge C., Stanford J. L. London: Academic Press;
    [Google Scholar]
  22. Draper P. 1998; The outer parts of the mycobacterial envelope as permeability barriers. Frontiers Biosci 3:d1253–d1261
    [Google Scholar]
  23. Dubnau E., Chan J., Raynaud C., Mohan V. P., Smith I, Lanéelle M.-A., Yu K., Quémard A., Daffé M. 2000; Oxygenated mycolic acids are necessary for virulence of M. tuberculosis in mice. Mol Microbiol 36:630–637
    [Google Scholar]
  24. Durand E., Gillois M., Tocanne J.-F., Lanéelle G. 1979; Property and activity of cord factor and related bacterial glycolipid toxins. Effects on mitochondrial oxidative phosphorylation related to organization of suspensions and to acyl chain structures. Eur J Biochem 94:110–118
    [Google Scholar]
  25. Funke G., Lawson P. A., Bernard K. A., Collins M. D. 1996; Most Corynebacterium xerosis strains identified in the routine clinical laboratory correspond to Corynebacterium amycolatum. J Clin Microbiol 34:1124–1128
    [Google Scholar]
  26. Funke G., Clarridge J. E.III, Bernard K. A, von Graevenitz A. 1997; Clinical microbiology of coryneform bacteria. Clin Microbiol Rev 10:125–159
    [Google Scholar]
  27. George K. M., Yuan Y., Sherman D. R., Barry C. E.III. 1995; The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis . Identification and functional analysis of cmas -2. J Biol Chem 270:27292–27298 [CrossRef]
    [Google Scholar]
  28. Huchenq A., Marquet M., Welby M., Montrozier H., Goma G., Lanéelle G. 1984; Glutamate excretion triggering mechanism: a reinvestigation of the surfactant-induced modification of cell lipids. Ann Microbiol 135B:53–67
    [Google Scholar]
  29. Hunter S. W., Gaylord H., Brennan P. J. 1986; Structure and antigenicity of the phosphorylated lipopolysaccharide antigens from the leprosy and tubercle bacilli. J Biol Chem 261:12345–12351
    [Google Scholar]
  30. Jackson M., Raynaud C., Guilhot C., Laurent-Winter C., Ensergueix D., Gicquel B, Lanéelle M.-A., Daffé M. 1999; Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol Microbiol 31:1573–1587 [CrossRef]
    [Google Scholar]
  31. Joliff G., Mathieu L., Hahn V., Bayan N., Duchiron F., Renaud M., Shechter E., Leblon G. 1992; Cloning and nucleotide sequence of the csp1 gene encoding PS1, one of the two major secreted proteins of Corynebacterium glutamicum: the deduced N-terminal region of PS1 is similar to the Mycobacterium antigen 85 complex. Mol Microbiol 6:2349–2362 [CrossRef]
    [Google Scholar]
  32. Kartmann B., Stengler S., Niederweis M. 1999; Porins in the cell wall of Mycobacterium tuberculosis. J Bacteriol 181:6543–6546
    [Google Scholar]
  33. Krämer R. 1994; Secretion of amino acids by bacteria: physiology and mechanism. FEMS Microbiol Rev 13:75–94 [CrossRef]
    [Google Scholar]
  34. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  35. Lemassu A., Daffé M. 1994; Structural features of the exocellular polysaccharides of Mycobacterium tuberculosis . Biochem J 297:351–357
    [Google Scholar]
  36. Lemassu A., Bardou F., Silve G, Ortalo-Magné A., Lanéelle M.-A., Daffé M. 1996; Extracellular and surface-exposed polysaccharides of non tuberculous mycobacteria. Microbiology 142:1513–1520 [CrossRef]
    [Google Scholar]
  37. Leopold K., Fisher W. 1993; Molecular analysis of the lipoglycans of Mycobacterium tuberculosis. Anal Biochem. 20857–84 [CrossRef]
  38. Lichtinger T., Burkovski A., Niederweis M., Benz R, Krämer R. 1998; Biochemical and biophysical characterization of the cell wall porin of Corynebacterium glutamicum: the channel is formed by a low molecular mass polypeptide. Biochemistry 37:15024–15032 [CrossRef]
    [Google Scholar]
  39. Lichtinger T., Heym B., Maier E., Eichner H., Cole S. T., Benz R. 1999; Evidence for a small anion-selective channel in the cell wall of Mycobacterium bovis BCG besides a wide cation-selective pore. FEBS Lett 454:349–355 [CrossRef]
    [Google Scholar]
  40. Liu J., Rosenberg E. Y., Nikaido H. 1995; Fluidity of the lipid domain of cell wall from Mycobacterium chelonae . Proc Natl Acad Sci USA 92:11254–11258 [CrossRef]
    [Google Scholar]
  41. Liu J., Barry C. E.III, Besra G. S., Nikaido H. 1996; Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem 271:29545–29551 [CrossRef]
    [Google Scholar]
  42. Lounatmaa K., Brander E. 1989; Crystalline cell surface layer of Mycobacterium bovis BCG. J Bacteriol 171:5756–5758
    [Google Scholar]
  43. Marienfeld S., Uhlemann E.-M., Burkovski A, Krämer R. 1997; Ultrastructure of the Corynebacterium glutamicum cell wall. Antonie Leeuwenhoek 72:291–297 [CrossRef]
    [Google Scholar]
  44. Minnikin D. E. 1982; Lipids: complex lipids, their chemistry, biosynthesis and roles. In The Biology of the Mycobacteria pp 95–184 Edited by Ratledge C., Stanford J. L. London: Academic Press;
    [Google Scholar]
  45. Minnikin D. E., Goodfellow M. 1980; Lipid composition in the classification and identification of acid-fast bacteria. In Microbiological Classification and Identification pp 189–239 Edited by Goodfellow M., Board R. G. London: Academic Press;
    [Google Scholar]
  46. Minnikin D. E., O’Donnell A. G. 1984; Actinomycete envelope lipid and peptidoglycan composition. In The Biology of Actinomycetes pp 337–388 Edited by Goodfellow M., Mordarski M., Williams S. T. London: Academic Press;
    [Google Scholar]
  47. Minnikin D. E., Goodfellow M., Collins M. D. 1978; Lipid composition in the classification and identification of coryneform and related taxa. In Coryneform Bacteria pp 85–160 Edited by Bousfield I. J., G A. Callely. London: Academic Press;
    [Google Scholar]
  48. Mukhopadhyay S., Basu D., Chakrabarti P. 1997; Characterization of a porin from Mycobacterium smegmatis . J Bacteriol 179:6205–6207
    [Google Scholar]
  49. Nikaido H., Kim S.-H., Rosenberg E. Y. 1995; Physical organization of lipids in the cell wall of Mycobacterium chelonae . Mol Microbiol 8:1025–1030
    [Google Scholar]
  50. Ortalo-Magné, A. Dupont M.-A., Lemassu A., Andersen A. B., Gounon P., Daffé M. 1995; Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology 141:1609–1620 [CrossRef]
    [Google Scholar]
  51. Ortalo-Magné A., Lemassu A., Lanéelle M.-A. Bardou F., Silve G., Gounon P., Marchal G., Daffé M. 1996; Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J Bacteriol 178:456–461
    [Google Scholar]
  52. Paul T. R., Beveridge T. J. 1992; Re-evaluation of envelope profiles and cytoplasmic ultrastructure of mycobacteria processed by conventional embedding and freeze-substitution protocols. J Bacteriol 174:6508–6517
    [Google Scholar]
  53. Peyret J.-L., Bayan N., Joliff G., Gulik-Krzywicki T., Mathieu L., Shechter E., Leblon G. 1993; Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum . Mol Microbiol 9:97–109 [CrossRef]
    [Google Scholar]
  54. Puech V., Bayan N., Salim K., Leblon G., Daffé M. 2000; Characterization of the in vivo acceptors of the mycoloyl residues transferred by the corynebacterial PS1 and the related mycobacterial antigens 85. Mol Microbiol 35:1026–1041 [CrossRef]
    [Google Scholar]
  55. Rastogi N. 1991; Recent observations concerning structure and function relationships in the mycobacterial cell envelope: elaboration of a model in terms of mycobacterial pathogenicity, virulence and drug-resistance. Res Microbiol 142:464–476 [CrossRef]
    [Google Scholar]
  56. Rastogi N., Frehel C., David H. L. 1984; Cell envelope architectures of leprosy-derived corynebacteria, Mycobacterium leprae , and related organisms: a comparative study. Curr Microbiol 11:23–30 [CrossRef]
    [Google Scholar]
  57. Rastogi N., David H. L, Fréhel C. 1986; Triple-layered structure of mycobacterial cell wall: evidence for the existence of a polysaccharide-rich outer layer in 18 mycobacterial species. Curr Microbiol 13:237–242 [CrossRef]
    [Google Scholar]
  58. Raynaud C., Etienne G., Peyron P., Lanéelle M. A., Daffé M. 1998; Delineation of extracellular enzymic activities potentially involved in the pathogenicity of Mycobacterium tuberculosis . Microbiology 144:577–587 [CrossRef]
    [Google Scholar]
  59. Rieß F. G., Lichtinger T., Cseh R., Yassin A. F., Schaal K. P., Benz R. 1998; The cell wall porin of Nocardia farcinica: biochemical identification of the channel-forming protein and biophysical characterization of the channel properties. Mol Microbiol 29:139–150 [CrossRef]
    [Google Scholar]
  60. Salim K., Haedens V., Content J., Leblon G., Huygen K. 1997; Heterologous expression of the Mycobacterium tuberculosis gene encoding antigen 85A in Corynebacterium glutamicum . Appl Environ Microbiol 63:4392–4400
    [Google Scholar]
  61. Senaratne R. H., Mobasheri H., Papavinasasundaram K. G., Jenner P., Lea E. J. A., Draper P. 1998; Expression of gene for a porin-like protein of the OmpA family from Mycobacterium tuberculosis H37Rv. J Bacteriol 180:3541–3547
    [Google Scholar]
  62. Soual-Hoebeke E., Chami M., Baucher M.-F., Guyonvarch A., Bayan N., Salim K., Leblon G, de Sousa-D’Auria C. 1999; S-layer protein production by Corynebacterium strains is dependent on the carbon source. Microbiology 145:3399–3408
    [Google Scholar]
  63. Sutcliffe I. C. 1995; Identification of a lipoarabinomannan-like lipoglycan in Corynebacterium matruchotii. Arch Oral Biol 40. 1119–1124 [CrossRef]
  64. Sutcliffe I. C. 1997; Macroamphiphilic cell envelope components of Rhodococcus equi and closely related bacteria. Vet Microbiol 56:287–299 [CrossRef]
    [Google Scholar]
  65. Sweeley C. C., Bentley R., Makita M., Wells W. W. 1963; Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. J Am Chem Soc 85:2497–2507 [CrossRef]
    [Google Scholar]
  66. Takeo K., Kimura K., Kuze F., Nakai E., Nonaka T., Nishiura M. 1984; Freeze-fracture observations on the cell walls and peribacillary substances of various mycobacteria. J Gen Microbiol 130:1151–1159
    [Google Scholar]
  67. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad USA 76:4350–4354 [CrossRef]
    [Google Scholar]
  68. Trias J., Benz R. 1994; Permeability of the cell wall of Mycobacterium smegmatis. Mol Microbiol 14. 283–290 [CrossRef]
  69. Trias J., Jarlier V., Benz R. 1992; Porins in the cell wall of mycobacteria. Science 258:1479–1481 [CrossRef]
    [Google Scholar]
  70. Trieu-Cuot P., Courvalin P. 1983; Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3′5′-aminoglycoside phosphotransferase type III. Gene 23:331–341 [CrossRef]
    [Google Scholar]
  71. Welby-Gieusse M., Asselineau J, Lanéelle M.-A. 1970; Structure des acides corynomycoliques de Corynebacterium hofmanii et leur implication biogénétique. Eur J Biochem 13:164–167 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-5-1365
Loading
/content/journal/micro/10.1099/00221287-147-5-1365
Loading

Data & Media loading...

Most cited Most Cited RSS feed