1887

Abstract

When levanase (SacC), α-amylase (AmyE) and chitosanase (Csn) structural genes were expressed under the regulated control of , the inducible levansucrase (SacB) leader region in a (Hy) mutant, it was observed that the production yields of the various extracellular proteins were quite different. This is mainly due to differences in the stabilities of their corresponding mRNAs which lead to discrepancies between the steady-state level of mRNA of and on the one hand and and on the other. In contrast to levansucrase mRNA, the decay curves of α-amylase and levanase mRNAs obtained by Northern blotting analysis did not match the decay curves of their functional mRNA. This suggested that only a part of the population of the and transcripts was fully translated, while the others were possibly poorly bound to ribosomes and thus were only partially translated or not at all and consequently submitted to rapid endonuclease degradation. This hypothesis was substantiated by the finding that the introduction of a Shine–Dalgarno sequence upstream from the ribosome-binding site in the transcript resulted in a fourfold increase in both the half-life of this transcript and the production of levanase. An additional cause of low-level levanase production is the premature release of mRNA by the polymerase. It was attempted to correlate this event with internal secondary structures of mRNA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-5-1331
2001-05-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/5/1471331a.html?itemId=/content/journal/micro/10.1099/00221287-147-5-1331&mimeType=html&fmt=ahah

References

  1. Agaisse H., Lereclus D. 1996; STAB-SD: a Shine–Dalgarno sequence in the 5′ untranslated region is a determinant of mRNA stability. Mol Microbiol 20:633–643 [CrossRef]
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. editors 1994 Current Protocols in Molecular Biology New York: Wiley Interscience;
    [Google Scholar]
  3. Aymerich S., Steinmetz M. 1992; Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family . Proc Natl Acad Sci USA. 8910410–10414 [CrossRef]
  4. Bechhofer D. H. 1993; 5′ mRNA stabilizers. In Control of Messenger RNA Stability pp 31–52 Edited by Belasco J. G., Brawerman G. London: Academic Press;
    [Google Scholar]
  5. Bechhofer D. H., Dubnau D. 1987; Induced stability in Bacillus subtilis . Proc Natl Acad Sci USA 84:498–502 [CrossRef]
    [Google Scholar]
  6. Bechhofer D. H., Wang W. 1998; Decay of ermC messenger RNA in a polynucleotide phosphorylase mutant of Bacillus subtilis . J Bacteriol 180:5968–5977
    [Google Scholar]
  7. Bechhofer D. H., Zen K. 1989; Mechanism of erythromicin-induced ermC mRNA stability in Bacillus subtilis . J Bacteriol 171:5803–5811
    [Google Scholar]
  8. Bouvet P., Belasco J. G. 1992; Control of RNase E-mediated RNA degradation by 5′ termini base pairing in Escherichia coli . Nature 3:488–491
    [Google Scholar]
  9. Carrier T. A., Kiesling J. D. 1997; Controlling messenger RNA stability in bacteria: strategies for engineering gene expression. Biotechnol Prog 13:699–708 [CrossRef]
    [Google Scholar]
  10. Chambert R., Petit-Glatron M. F. 1984; Hyperproduction of extracellular levansucrase by Bacillus subtilis : examination of the phenotype of a sacU h strain. J Gen Microbiol 130:3143–3152
    [Google Scholar]
  11. Chambert R., Rain-Guion M. C., Petit-Glatron M. F. 1992; Readthrough of the Bacillus subtilis levansucrase stop codon produces an extended enzyme displaying a higher polymerase activity. Biochim Biophys Acta 1132:145–153 [CrossRef]
    [Google Scholar]
  12. Coburn G. A., Mackie G. A. 1999; Degradation of mRNA in Escherichia coli : an old problem with some new twists. Prog Nucleic Acid Res Mol Biol 62:55–108
    [Google Scholar]
  13. Condon C., Putzer H., Luo D., Grunberg-Manago M. 1997; Processing of the Bacillus subtilis thrS leader mRNA is RNase E-dependent in Escherichia coli . J Mol Biol 268:235–242 [CrossRef]
    [Google Scholar]
  14. Crutz A. M., Steinmetz M., Aymerich S., Richter R., Le Coq D. 1990; Induction of levansucrase in Bacillus subtilis : an antitermination mechanism negatively controlled by the phosphotransferase system. J Bacteriol 17:1043–1050
    [Google Scholar]
  15. Dion M., Rapoport G., Doly J. 1989; Expression of the MuIFNα7 gene in Bacillus subtilis using the levansucrase system. Biochimie 71:747–755 [CrossRef]
    [Google Scholar]
  16. Emory S. A., Bouvet P., Belasco J. G. 1992; A 5′-terminal stem–loop structure can stabilize mRNA in Escherichia coli . Genes Dev 6:135–148 [CrossRef]
    [Google Scholar]
  17. Farr G. A., Oussenko I. A., Bechhofer D. H. 1999; Protection against 3′ to 5′ RNA decay in Bacillus subtilis . J Bacteriol 181:7323–7330
    [Google Scholar]
  18. Higgins C. F., Causton H. C., Dance G. S. C., Mudd E. A. 1993; The role of the 3′ end in mRNA stability and decay. In Control of Messenger RNA Stability pp 13–30 Edited by Belasco J. G., Brawerman G. London: Academic Press;
    [Google Scholar]
  19. Horionouchi S., Weisblum B. 1982; Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol 150:815–825
    [Google Scholar]
  20. Hue K. K., Cohen S. D., Bechhofer D. H. 1995; A polypurine sequence that acts as a 5′ stabilizer in Bacillus subtilis . J Bacteriol 177:3465–3471
    [Google Scholar]
  21. Joliff G., Edelman A., Klier A., Rapoport G. 1989; Inducible secretion of a cellulase from Clostridium thermocellum in Bacillus subtilis . Appl Environ Microbiol 55:2739–2744
    [Google Scholar]
  22. Joyet P., Levin D., de Louvencourt L., Le Révérent B., Aymerich A., Heslot H. 1986; Expression of a thermostable alpha-amylase gene under the control of levansucrase inducible promoter from Bacillus subtilis . In Bacillus Molecular Genetics and Biotechnology Applications pp 470–491 Edited by Ganesan A. T., Hoch J. A. London: Academic Press;
    [Google Scholar]
  23. Kaberdin V. R., Miczak A., Jakobsen J. S., Lin-Chao S., McDowall K. J, von Gabain A. 1998; The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly. Proc Natl Acad Sci USA 95:11637–11642 [CrossRef]
    [Google Scholar]
  24. Karlin S., Mrazek J. 2000; Predicted highly expressed genes of diverse prokaryotes . J Bacteriol 182:5238–5250 [CrossRef]
    [Google Scholar]
  25. Kunst F., Ogasawara N., Moszer I. 148 other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis . Nature 390:249–256 [CrossRef]
    [Google Scholar]
  26. Leloup L., Haddaoui E., Chambert R., Petit-Glatron M. F. 1997; Characterization of the rate limiting step of the secretion of Bacillus subtilis α-amylase overproduced during the exponential phase of growth. Microbiology 143:3295–3303 [CrossRef]
    [Google Scholar]
  27. Leloup L., Le Saux J., Petit-Glatron M. F., Chambert R. 1999; Kinetics of the secretion of Bacillus subtilis levanase overproduced during the exponential phase of growth. Microbiology 145:613–619 [CrossRef]
    [Google Scholar]
  28. Lepesant J. A., Kunst F., Pascal J., Kejzlarova-Lepesant Steimetz M, Dedonder R. 1976; Specific and pleiotropic regulatory mechanisms in the sucrose system of Bacillus subtilis 168. In Microbiology – 1976 pp 58–69 Edited by Schlessinger D. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Martin-Verstraete I., Klier A., Rapoport G, Débarbouillé, M. 1990; Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol 214:657–671 [CrossRef]
    [Google Scholar]
  30. Masson J. Y., Denis F., Brezinski R. 1994; Primary sequence of the chitosanase from Streptomyces sp. strain N174 and comparison with other endoglycosidases. Gene 140:103–107 [CrossRef]
    [Google Scholar]
  31. Nitschké P., Guerdoux-Jamet P. Chiapello H., Faroux G., Henaut C., Henaut A., Danchin A. 1998; Indigo: a World-Wide-Web review of genomes and gene functions. FEMS Microbiol Rev 22:207–227 [CrossRef]
    [Google Scholar]
  32. Oussenko I. A., Bechhofer D. H. 2000; The yvaJ gene of Bacillus subtilis encodes a 3′-to-5′ exoribonuclease and is not essential in a strain lacking polynucleotide phosphorylase. J Bacteriol 182:2639–2642 [CrossRef]
    [Google Scholar]
  33. Parro V., San Roman M., Galindo I., Purnelle B., Bolotin A., Sorokin A., Mellado R. P. 1997; A 23911 nucleotide region of the Bacillus subtilis genome comprising genes located upstream and downstream of the lev operon. Microbiology 143:1321–1326 [CrossRef]
    [Google Scholar]
  34. Petersen C. 1993; Translation and mRNA stability in bacteria: a complex relationship. In Control of Messenger RNA Stability pp 117–145 Edited by Belasco J. G., Brawerman G. London: Academic Press;
    [Google Scholar]
  35. Petit M. A., Joliff G., Mesas J. M., Klier A., Rapoport G., Ehrlich S. D. 1990; Hypersecretion of a cellulase from Clostridium thermocellum in Bacillus subtilis by induction of chromosomal DNA amplification. Biotechnology 8:559–563 [CrossRef]
    [Google Scholar]
  36. Petit-Glatron M. F., Chambert R. 1992; Peptide carrier potentiality of Bacillus subtilis levansucrase. J Gen Microbiol 138:1089–1095 [CrossRef]
    [Google Scholar]
  37. Priest F. G. 1977; Extracellular enzyme synthesis in the genus Bacillus . Bacteriol Rev 41:711–753
    [Google Scholar]
  38. Putzer H., Gendron N., Grunberg-Manago M. 1992; Co-ordinate expression of the two threonyl-tRNA synthetase genes in Bacillus subtilis : control by transcriptional antitermination involving a conserved regulatory sequence. EMBO J 11:3117–3127
    [Google Scholar]
  39. Régnier P. Arraiano C. M. 2000; Degradation of mRNA in bacteria: emergence of ubiquitous features. Bioessays 22:235–244 [CrossRef]
    [Google Scholar]
  40. Saier M. H. Jr 1995; Differential codon usage: a safeguard against inappropriate expression of specialized genes?. FEBS Lett 362:1–4 [CrossRef]
    [Google Scholar]
  41. Shields D. C., Sharp P. M. 1987; Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res 15:8023–8040 [CrossRef]
    [Google Scholar]
  42. Shimotsu H., Henner D. J. 1986; Modulation of Bacillus subtilis levansucrase gene expression by sucrose and regulation of steady-state mRNA level by sacU and sacQ genes. J Bacteriol 168:380–388
    [Google Scholar]
  43. Steege D. A. 2000; Emerging features of mRNA decay in bacteria. RNA 6:1079–1090 [CrossRef]
    [Google Scholar]
  44. Steinmetz M., Le Coq D., Aymerich S., Gay P, Gonzy-Tréboul G. 1985; The DNA sequence of the gene for the secreted Bacillus subtilis enzyme levansucrase and its genetic control sites. Mol Gen Genet 200:220–228 [CrossRef]
    [Google Scholar]
  45. Tominaga Y., Tsujisaka Y. 1975; Purification and some enzymatic properties of the chitosanase from Bacillus R-4 which lyses Rhizopus cell walls. Biochim Biophys Acta 410:145–155 [CrossRef]
    [Google Scholar]
  46. Wang W., Bechhofer D. H. 1996; Properties of a Bacillus subtilis polynucleotide phosphorylase deletion strain. J Bacteriol 178:2375–2382
    [Google Scholar]
  47. Wang W., Bechhofer D. H. 1997; Bacillus subtilis RNase III gene: cloning, function of the gene in Escherichia coli , and construction of Bacillus subtilis strains with altered rnc loci. J Bacteriol 179:7379–7385
    [Google Scholar]
  48. Wong S. L. 1989; Development of an inducible and enhancible expression and secretion system in Bacillus subtilis . Gene 83:215–223 [CrossRef]
    [Google Scholar]
  49. Yamaguchi K., Nagata Y., Maruo B. 1974; Genetic control of the rate of alpha amylase synthesis in Bacillus subtilis . J Bacteriol 119:410–415
    [Google Scholar]
  50. Zuker M., Mathews D. H., Turner D. H. 1999; Algorithms and thermodynamics for RNA secondary structure prediction. A practical guide. In RNA Biochemistry and Biotechnology Edited by Barciszewski J., Clark B. F. C. NATO ASI Series: Kluwer Academic Publishers;
    [Google Scholar]
/content/journal/micro/10.1099/00221287-147-5-1331
Loading
/content/journal/micro/10.1099/00221287-147-5-1331
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error