1887

Abstract

The ferric uptake regulator (Fur) functions as a transcription repressor of many genes in bacteria in response to iron, but the presence of a functional equivalent of this protein has not been demonstrated in . A segment of the gene was amplified using degenerate primers and used to identify chromosomal restriction fragments containing the entire genes of and . These fragments were cloned and sequenced, revealing the Fur protein of both species to be a polypeptide of 142 amino acids possessing a high degree of amino acid sequence identity to Fur of other members of the β subclass of the . Primer extension analysis demonstrated that transcription of originated from a single promoter located 36 bp upstream from the translation initiation codon. The Fur polypeptide of was shown to functionally substitute for Fur in an mutant. Single copy fusions were constructed and used to examine the regulation of . The promoter was not responsive to iron availability, the presence of hydrogen peroxide or the superoxide generator methyl viologen. In addition, expression was not significantly influenced by carbon source. Interestingly, the presence of the divergently transcribed / gene upstream of in some members of the γ subclass of the is retained in several genera within the β taxon, including .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-5-1303
2001-05-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/5/1471303a.html?itemId=/content/journal/micro/10.1099/00221287-147-5-1303&mimeType=html&fmt=ahah

References

  1. Althaus E. W., Outten C. E., Olson K. E., Cao H., O’Halloran T. V. 1999; The ferric uptake regulation (Fur) repressor is a zinc metalloprotein. Biochemistry38:6559–6569[CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  3. Amman E., Ochs B., Abel K.-J. 1988; Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli . Gene69:301–315[CrossRef]
    [Google Scholar]
  4. Bagg A., Neilands J. B. 1987a; Ferric uptake regulation protein acts as a repressor, employing iron(II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli . Biochemistry26:5471–5477[CrossRef]
    [Google Scholar]
  5. Bagg A., Neilands J. B. 1987b; Molecular mechanism of regulation of siderophore mediated iron assimilation. Microbiol Rev51:509–518
    [Google Scholar]
  6. Barton H. A., Johnson Z., Cox C. D., Vasil A. I., Vasil M. L. 1996; Ferric uptake regulator mutants of Pseudomonas aeruginosa with distinct alterations in the iron-dependent repression of exotoxin A and siderophores in aerobic and microaerobic environments. Mol Microbiol21:1001–1017[CrossRef]
    [Google Scholar]
  7. Brosius J., Erfle M., Storella J. 1985; Spacing of the −10 and −35 regions in the tac promoter. J Biol Chem260:3539–3541
    [Google Scholar]
  8. Bsat N., Helmann J. D. 1999; Interaction of the Bacillus subtilis Fur (ferric uptake repressor) with the dhb operator in vitro and in vivo. J Bacteriol181:4299–4307
    [Google Scholar]
  9. Bsat N., Herbig A., Casillas-Martinez L., Setlow P., Helmann J. D. 1998; Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol29:189–198[CrossRef]
    [Google Scholar]
  10. Burkholder W. H. 1950; Sour skin, a bacterial rot of onion bulbs. Phytopathology40:115–117
    [Google Scholar]
  11. Calderwood S. B., Mekalanos J. J. 1988; Confirmation of the Fur operator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid. J Bacteriol170:1015–1017
    [Google Scholar]
  12. Chang A. C. Y., Cohen S. N. 1978; Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the p15A cryptic miniplasmid. J Bacteriol134:1141–1156
    [Google Scholar]
  13. Chaowagul W., White N. J., Dance D. A. B., Wattanagoon Y., Naigowit P., Davis T. M. E., Looareesuwan S., Pitakwatchara N. 1989; Melioidosis – a major cause of community-acquired septicemia in northeastern Thailand. J Infect Dis159:890–899[CrossRef]
    [Google Scholar]
  14. Clowes R. C., Hayes W. 1968; Experiments in Microbial Genetics Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  15. Cusa E., Obradors N., Baldoma L., Badia J., Aguilar J. 1999; Genetic analysis of a chromosomal region containing genes required for assimilation of allantoin nitrogen and linked glyoxylate metabolism in Escherichia coli . J Bacteriol181:7479–7484
    [Google Scholar]
  16. Dance D. A. B. 1991; Melioidosis: the tip of the iceberg?. Clin Microbiol Rev4:52–60
    [Google Scholar]
  17. Darling P., Chan M., Cox A. D., Sokol P. A. 1998; Siderophore production by cystic fibrosis isolates of Burkholderia cepacia . Infect Immun66:874–877
    [Google Scholar]
  18. Escolar L., Perez-Martin J., de Lorenzo V. 1998; Binding of Fur (ferric uptake regulator) repressor of Escherichia coli to arrays of the GATAAT sequence. J Mol Biol283:537–547[CrossRef]
    [Google Scholar]
  19. Escolar L., Perez-Martin J., de Lorenzo V. 1999; Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol181:6223–6229
    [Google Scholar]
  20. Escolar L., Perez-Martin J., de Lorenzo V. 2000; Evidence of an unusually long operator for the Fur repressor in the aerobactin promoter of Escherichia coli . J Biol Chem275:24709–24714[CrossRef]
    [Google Scholar]
  21. Hamza I., Hassett R., O’Brian M. R. 1999; Identification of a functional fur gene in Bradyrhizobium japonicum . J Bacteriol181:5843–5846
    [Google Scholar]
  22. Hantke K. 1984; Cloning of the repressor protein gene of iron-regulated systems in Escherichia coli K12. Mol Gen Genet197:337–341[CrossRef]
    [Google Scholar]
  23. Hantke K. 1987; Selection procedure for deregulated iron transport mutants ( fur ) in Escherichia coli K12: fur not only affects iron metabolism. Mol Gen Genet210:135–139[CrossRef]
    [Google Scholar]
  24. Heinrichs D. E., Poole K. 1996; PchR, a regulator of ferripyochelin receptor gene ( fptA ) expression in Pseudomonas aeruginosa , functions both as an activator and as a repressor. J Bacteriol178:2586–2592
    [Google Scholar]
  25. Herrero M., Timmis K. N, de Lorenzo V.. 1990; Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria . J Bacteriol172:6557–6567
    [Google Scholar]
  26. Hutchison M. L., Poxton I. R., Govan J. R. W. 1998; Burkholderia cepacia produces a haemolysin that is capable of inducing apoptosis and degranulation of mammalian phagocytes. Infect Immun66:2033–2039
    [Google Scholar]
  27. Jacquamet L., Aberdam D., Adrait A., Hazemann J.-L., Latour J.-M., Michaud-Soret I. 1998; X-ray absorption spectroscopy of a new zinc site in the Fur protein from Escherichia coli . Biochemistry37:2564–2571[CrossRef]
    [Google Scholar]
  28. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M., Peterson K. M. 1994; pBBR1MCS: a broad-host-range cloning vector. Biotechniques16:800–802
    [Google Scholar]
  29. LiPuma J. J. 1998; Burkholderia cepacia – management issues and new insights. Clin Chest Med19:473–486[CrossRef]
    [Google Scholar]
  30. Litwin C. M., Calderwood S. B. 1993; Role of iron in regulation of virulence genes. Clin Microbiol Rev6:137–149
    [Google Scholar]
  31. Lonon M. K., Woods D. E., Straus D. C. 1988; Production of lipase by clinical isolates of Pseudomonas cepacia . J Clin Microbiol26:979–984
    [Google Scholar]
  32. Loprasert S., Sallabhan R., Atichartpongkul S., Mongkolsuk S. 1999; Characterisation of a ferric uptake regulator ( fur ) gene from Xanthomonas campestris pv. phaseoli with unusual primary structure, genome organisation, and expression patterns. Gene239:251–258[CrossRef]
    [Google Scholar]
  33. Loprasert S., Sallabhan R., Whangsuk W., Mongkolsuk S. 2000; Characterization and mutagenesis of fur gene from Burkholderia pseudomallei . Gene254:129–137[CrossRef]
    [Google Scholar]
  34. de Lorenzo V.. Timmis K. N. 1994; Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn 5 - and Tn 10 -derived minitransposons. Methods Enzymol235:386–405
    [Google Scholar]
  35. de Lorenzo V.. Wee S., Herrero M., Neilands J. B. 1987; Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation (Fur) repressor. J Bacteriol169:2624–2630
    [Google Scholar]
  36. de Lorenzo V.. Herrero M., Giovannini F., Neilands J. B. 1988; Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli . Eur J Biochem173:537–546[CrossRef]
    [Google Scholar]
  37. de Luca N. G.. Wexler M., Pereira M. J., Yeoman K. H., Johnston A. W. B. 1998; Is the fur gene of Rhizobium leguminosarum essential?. FEMS Microbiol Lett168:289–295[CrossRef]
    [Google Scholar]
  38. McKevitt A. I., Bajaksouzian S., Klinger J. D., Woods D. E. 1989; Purification and characterization of an extracellular protease from Pseudomonas cepacia . Infect Immun57:771–778
    [Google Scholar]
  39. Melnikov A., Zaborina O., Dhiman N., Prabhakar B. S., Chakrabarty A. M., Hendrickson W. 2000; Clinical and environmental isolates of Burkholderia cepacia exhibit differential cytotoxicity towards macrophages and mast cells. Mol Microbiol36:1481–1493
    [Google Scholar]
  40. Metcalf W. W., Jiang W., Wanner B. L. 1994; Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6Kγ origin plasmids at different copy numbers. Gene138:1–7[CrossRef]
    [Google Scholar]
  41. Michaud-Soret I., Adrait A., Jaquinod M., Forest E., Touati D., Latour J.-M. 1997; Electrospray ionization mass spectroscopy analysis of the apo- and metal-substituted forms of the Fur protein. FEBS Lett413:473–476[CrossRef]
    [Google Scholar]
  42. Miller J. H. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Mooney R. A., Artsimovitch I., Landick R. 1998; Information processing by RNA polymerase: recognition of regulatory signals during RNA chain elongation. J Bacteriol180:3265–3275
    [Google Scholar]
  44. Nakazawa T., Yamada Y., Ishibashi M. 1987; Characterisation of hemolysin in extracellular products of Pseudomonas cepacia . J Clin Microbiol25:195–198
    [Google Scholar]
  45. Norrander J., Kempe T., Messing J. 1983; Construction of improved M13 vectors using oligo-deoxynucleotide-directed mutagenesis. Gene26:101–106[CrossRef]
    [Google Scholar]
  46. Ochsner U. A., Vasil A. I., Johnson Z., Vasil M. L. 1999; Pseudomonas aeruginosa fur overlaps with a gene encoding a novel outer membrane lipoprotein, OmlA. J Bacteriol181:1099–1109
    [Google Scholar]
  47. Pattery T., Hernalsteens J.-P., De Greve H. 1999; Identification and molecular characterization of a novel Salmonella enteritidis pathogenicity islet encoding an ABC transporter. Mol Microbiol33:791–805[CrossRef]
    [Google Scholar]
  48. de Peredo A. G.. Saint-Pierre C., Adrait A., Jacquamet L., Latour J. M., Michaud-Soret I., Forest E. 1999; Identification of the two zinc-bound cysteines in the ferric uptake regulation protein from Escherichia coli : chemical modification and mass spectrometry analysis. Biochemistry38:8582–8589[CrossRef]
    [Google Scholar]
  49. Saito T., Wormald M. R., Williams R. J. P. 1991; Some structural features of the iron-uptake regulation protein. Eur J Biochem197:29–38[CrossRef]
    [Google Scholar]
  50. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Schaffer S., Hantke K., Braun V. 1985; Nucleotide sequence of the iron regulatory gene fur . Mol Gen Genet200:110–113[CrossRef]
    [Google Scholar]
  52. Schwyn B., Neilands J. B. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem160:47–56[CrossRef]
    [Google Scholar]
  53. Sokol P. 1986; Production and utilisation of pyochelin by clinical isolates of Pseudomonas cepacia . J Clin Microbiol23:560–562
    [Google Scholar]
  54. Sokol P. A., Woods D. E. 1988; Effect of pyochelin on Pseudomonas cepacia respiratory infection. Microb Pathog5:197–205[CrossRef]
    [Google Scholar]
  55. Sokol P. A., Darling P., Woods D. E., Mahenthiralingam E., Kooi C. 1999; Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia : characterization of pvdA , the gene encoding l-ornithine N5-oxygenase. Infect Immun67:4443–4455
    [Google Scholar]
  56. Stewart G. S. A. B., Lubinsky-Mink S., Jackson C. G., Cassel A., Kuhn J. 1986; A pBR322 copy number derivative of pUC18 for cloning and expression. Plasmid15:172–181[CrossRef]
    [Google Scholar]
  57. Stojiljkovic I., Baumler A. J., Hantke K. 1994; Fur regulon in Gram-negative bacteria: identification and characterisation of new iron-regulated Escherichia coli genes by the Fur titration assay. J Mol Biol236:531–545[CrossRef]
    [Google Scholar]
  58. Storz G., Altuvia S. 1994; OxyR regulon. Methods Enzymol234:217–223
    [Google Scholar]
  59. Thomas C. E., Sparling P. F. 1994; Identification and cloning of a fur homologue from Neisseria meningitidis . Mol Microbiol11:725–737[CrossRef]
    [Google Scholar]
  60. Vandamme P., Holmes B., Vancanneyt M.. 8 other authors 1997; Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol47:1188–1200[CrossRef]
    [Google Scholar]
  61. Vandamme P., Mahenthiralingam E., Holmes B., Coenye T., Hoste B., De Vos P., Henry D., Speert D. P. 2000; Identification and population structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia genomovar IV. J Clin Microbiol38:1042–1047
    [Google Scholar]
  62. Vasil M. L., Ochsner U. A. 1999; The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol34:399–413[CrossRef]
    [Google Scholar]
  63. van Vliet A. H. M.. Rock J. D., Madeleine L. N., Ketley J. M. 2000; The iron-responsive regulator Fur of Campylobacter jejuni is expressed from two separate promoters. FEMS Microbiol Lett188:115–118[CrossRef]
    [Google Scholar]
  64. Wee S., Neilands J. B., Bittner M. L., Hemming B. C., Haymore B. L., Seetharam R. 1988; Expression, isolation and properties of Fur (ferric uptake regulation) protein of Escherichia coli K-12. Biol Metals1:62–68[CrossRef]
    [Google Scholar]
  65. Xiong A., Singh V. K., Cabrera G., Jayaswal K. 2000; Molecular characterization of the ferric-uptake regulator, Fur, from Staphylococcus aureus . Microbiology146:659–668
    [Google Scholar]
  66. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119[CrossRef]
    [Google Scholar]
  67. Zheng M., Doan B., Schneider T. D., Storz G. 1999; OxyR and SoxRS regulation of fur . J Bacteriol181:4639–4643
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-5-1303
Loading
/content/journal/micro/10.1099/00221287-147-5-1303
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error