1887

Abstract

The study of gene regulation in many organisms has been facilitated by the development of reporter genes. The authors report the use of from , a gene encoding a β-galactosidase, as a reporter for the fungal pathogen . As test cases, was placed under control of three different promoters: (maltase), inducible by maltose; (hyphal cell wall protein), induced by conditions that promote filamentous growth; and (actin). These constructs were each integrated into the genome and β-galactosidase activity was readily detected from these strains, but only under the appropriate growth conditions. β-Galactosidase activity could be detected by several methods: quantitative liquid assays using permeabilized cells, colorimetric assays of colonies replicated to paper filters, and coloration of colonies growing on medium containing the indicator X-Gal. These results show the usefulness of as a monitor of gene regulation in this medically important yeast.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-5-1189
2001-05-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/5/1471189a.html?itemId=/content/journal/micro/10.1099/00221287-147-5-1189&mimeType=html&fmt=ahah

References

  1. Alex, L. A., Korch, C., Selitrennikoff, C. P. & Simon, M. I. ( 1998; ). COS1, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen Candida albicans. Proc Natl Acad Sci USA 95, 7069-7073.[CrossRef]
    [Google Scholar]
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (1992). Current Protocols in Molecular Biology. New York: Greene Publishing Associates and Wiley-Interscience.
  3. Blanco, C., Ritzenthaler, P. & Mata-Gilsinger, M. ( 1985; ). Nucleotide sequence of a regulatory region of the uidA gene in Escherichia coli K12. Mol Gen Genet 199, 101-105.[CrossRef]
    [Google Scholar]
  4. Braun, B. R. & Johnson, A. D. ( 1997; ). Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105-109.[CrossRef]
    [Google Scholar]
  5. Brown, A. J. & Gow, N. A. ( 1999; ). Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7, 333-338.[CrossRef]
    [Google Scholar]
  6. Brown, D. H.Jr, Slobodkin, I. V. & Kumamoto, C. A. ( 1996; ). Stable transformation and regulated expression of an inducible reporter construct in Candida albicans using restriction enzyme-mediated integration. Mol Gen Genet 251, 75-80.
    [Google Scholar]
  7. Burns, N., Grimwade, B., Ross-Macdonald, P. B., Choi, E. Y., Finberg, K., Roeder, G. S. & Snyder, M. ( 1994; ). Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev 8, 1087-1105.[CrossRef]
    [Google Scholar]
  8. Calera, J. A., Zhao, X. J. & Calderone, R. ( 2000; ). Defective hyphal development and avirulence caused by a deletion of the SSK1 response regulator gene in Candida albicans. Infect Immun 68, 518-525.[CrossRef]
    [Google Scholar]
  9. Cormack, B. P., Bertram, G., Egerton, M., Gow, N. A. R., Falkow, S. & Brown, A. J. ( 1997; ). Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology 143, 303-311.[CrossRef]
    [Google Scholar]
  10. Csank, C., Makris, C., Meloche, S., Schröppel, K., Röllinghoff, M., Dignard, D., Thomas, D. Y. & Whiteway, M. ( 1997; ). Derepressed hyphal growth and reduced virulence in a VH1 family-related protein phosphatase mutant of the human pathogen Candida albicans. Mol Biol Cell 8, 2539-2551.[CrossRef]
    [Google Scholar]
  11. Csank, C., Schroppel, K., Leberer, E., Harcus, D., Mohamed, O., Meloche, S., Thomas, D. Y. & Whiteway, M. ( 1998; ). Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 66, 2713-2721.
    [Google Scholar]
  12. Delbruck, S. & Ernst, J. F. ( 1993; ). Morphogenesis-independent regulation of actin transcript levels in the pathogenic yeast Candida albicans. Mol Microbiol 10, 859-866.[CrossRef]
    [Google Scholar]
  13. Fonzi, W. A. & Irwin, M. Y. ( 1993; ). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717-728.
    [Google Scholar]
  14. Gale, C. A., Bendel, C. M., McClellan, M., Hauser, M., Becker, J. M., Berman, J. & Hostetter, M. K. ( 1998; ). Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279, 1355-1358.[CrossRef]
    [Google Scholar]
  15. Gietz, R. D., Schiestl, R. H., Willems, A. R. & Woods, R. A. ( 1995; ). Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355-360.[CrossRef]
    [Google Scholar]
  16. Gilbert, W. & Maxam, A. ( 1973; ). The nucleotide sequence of the lac operator. Proc Natl Acad Sci USA 70, 3581-3584.[CrossRef]
    [Google Scholar]
  17. Gimeno, C. J., Ljungdahl, P. O., Styles, C. A. & Fink, G. R. ( 1992; ). Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68, 1077-1090.[CrossRef]
    [Google Scholar]
  18. Guarente, L. ( 1983; ). Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol 101, 181-191.
    [Google Scholar]
  19. Guarente, L. & Ptashne, M. ( 1981; ). Fusion of Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 78, 2199-2203.[CrossRef]
    [Google Scholar]
  20. Guthrie, C. & Fink, G. R. (1991). Guide to Yeast Genetics and Molecular Biology. San Diego: Academic Press.
  21. Hill, J., Donald, K. A., Griffiths, D. E. & Donald, G. ( 1991; ). DMSO-enhanced whole cell yeast transformation. [An erratum appears in Nucleic Acids Res 11, 6688.] Nucleic Acids Res 19, 5791.[CrossRef]
    [Google Scholar]
  22. Jacobson, R. H., Zhang, X. J., DuBose, R. F. & Matthews, B. W. ( 1994; ). Three-dimensional structure of beta-galactosidase from E. coli. Nature 369, 761-766.[CrossRef]
    [Google Scholar]
  23. Kwon-Chung, K. B. (1992). Medical Mycology. Philadelphia: Lea & Febinger.
  24. Leberer, E., Harcus, D., Broadbent, I. D. & 7 other authors ( 1996; ). Signal transduction through homologues of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci USA 93, 13217–13222.[CrossRef]
    [Google Scholar]
  25. Leberer, E., Ziegelbauer, K., Schmidt, A., Harcus, D., Dignard, D., Ash, J., Johnson, L. & Thomas, D. Y. ( 1997; ). Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p. Curr Biol 7, 539-546.[CrossRef]
    [Google Scholar]
  26. Leuker, C. E., Hahn, A. M. & Ernst, J. F. ( 1992; ). β-Galactosidase of Kluyveromyces lactis (Lac4p) as reporter of gene expression in Candida albicans and C. tropicalis. Mol Gen Genet 235, 235-241.[CrossRef]
    [Google Scholar]
  27. Leuker, C. E., Sonneborn, A., Delbruck, S. & Ernst, J. F. ( 1997; ). Sequence and promoter regulation of the PCK1 gene encoding phosphoenolpyruvate carboxykinase of the fungal pathogen Candida albicans. Gene 192, 235-240.[CrossRef]
    [Google Scholar]
  28. Liu, H., Kohler, J. & Fink, G. R. ( 1994; ). Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266, 1723-1726.[CrossRef]
    [Google Scholar]
  29. Lo, H. J., Kohler, J. R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A. & Fink, G. R. ( 1997; ). Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939-949.[CrossRef]
    [Google Scholar]
  30. Myers, K. K., Sypherd, P. S. & Fonzi, W. A. ( 1995; ). Use of URA3 as a reporter of gene expression in C. albicans. Curr Genet 27, 243-248.[CrossRef]
    [Google Scholar]
  31. Newport, G. & Agabian, N. ( 1997; ). KEX2 influences Candida albicans proteinase secretion and hyphal formation. J Biol Chem 272, 28954-28961.[CrossRef]
    [Google Scholar]
  32. Odds, F. C. (1988). Candida and Candidosis, 2nd edn. London: Baillière Tindall.
  33. Ohama, T., Suzuki, T., Mori, M., Osawa, S., Ueda, T., Watanabe, K. & Nakase, T. ( 1993; ). Non-universal decoding of the leucine codon CUG in several Candida species. Nucleic Acids Res 21, 4039-4045.[CrossRef]
    [Google Scholar]
  34. Poch, O., L’Hote, H., Dallery, V., Debeaux, F., Fleer, R. & Sodoyer, R. ( 1992; ). Sequence of the Kluyveromyces lactis beta-galactosidase: comparison with prokaryotic enzymes and secondary structure analysis. Gene 118, 55-63.[CrossRef]
    [Google Scholar]
  35. Rose, M., Casadaban, M. J. & Botstein, D. ( 1981; ). Yeast genes fused to beta-galactosidase in Escherichia coli can be expressed normally in yeast. Proc Natl Acad Sci USA 78, 2460-2464.[CrossRef]
    [Google Scholar]
  36. Schroeder, C. J., Robert, C., Lenzen, G., McKay, L. L. & Mercenier, A. ( 1991; ). Analysis of the lacZ sequences from two Streptococcus thermophilus strains: comparison with the Escherichia coli and Lactobacillus bulgaricus β-galactosidase sequences. J Gen Microbiol 137, 369-380.[CrossRef]
    [Google Scholar]
  37. Sreekrishna, K. & Dickson, R. C. ( 1985; ). Construction of strains of Saccharomyces cerevisiae that grow on lactose. Proc Natl Acad Sci USA 82, 7909-7913.[CrossRef]
    [Google Scholar]
  38. Srikantha, T., Klapach, A., Lorenz, W. W., Tsai, L. K., Laughlin, L. A., Gorman, J. A. & Soll, D. R. ( 1996; ). The sea pansy Renilla reniformis luciferase serves as a sensitive bioluminescent reporter for differential gene expression in Candida albicans. J Bacteriol 178, 121-129.
    [Google Scholar]
  39. Srikantha, T., Tsai, L. K. & Soll, D. R. ( 1997; ). The WHI1 gene of Candida albicans is regulated in two distinct developmental programs through the same transcription activation sequences. J Bacteriol 179, 3837-3844.
    [Google Scholar]
  40. Staab, J. F., Ferrer, C. A. & Sundstrom, P. ( 1996; ). Developmental expression of a tandemly repeated, proline- and glutamine-rich amino acid motif on hyphal surfaces of Candida albicans. J Biol Chem 271, 6298-6305.[CrossRef]
    [Google Scholar]
  41. Stoldt, V. R., Sonneborn, A., Leuker, C. E. & Ernst, J. F. ( 1997; ). Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16, 1982-1991.[CrossRef]
    [Google Scholar]
  42. Swoboda, R. K., Bertram, G., Delbruck, S., Ernst, J. F., Gow, N. A. R., Gooday, G. W. & Brown, A. J. ( 1994; ). Fluctuations in glycolytic mRNA levels during morphogenesis in Candida albicans reflect underlying changes in growth and are not a response to cellular dimorphism. Mol Microbiol 13, 663-672.[CrossRef]
    [Google Scholar]
  43. Timpel, C., Strahl-Bolsinger, S., Ziegelbauer, K. & Ernst, J. F. ( 1998; ). Multiple functions of Pmt1p-mediated protein O-mannosylation in the fungal pathogen Candida albicans. J Biol Chem 273, 20837-20846.[CrossRef]
    [Google Scholar]
  44. Wirsching, S., Michel, S., Kohler, G. & Morschhauser, J. ( 2000; ). Activation of the multiple drug resistance gene MDR1 in fluconazole-resistant, clinical Candida albicans strains is caused by mutations in a trans-regulatory factor. J Bacteriol 182, 400-404.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-5-1189
Loading
/content/journal/micro/10.1099/00221287-147-5-1189
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error