1887

Abstract

DNA sequences flanking two genes ( and ) from pv. show a high degree of similarity. Specific primers designed from the conserved regions were used in PCR amplifications with all pv. races. As well as amplifying the expected and containing fragments, two additional fragments were amplified: one contained a single open reading frame (ORF1) and was found in races of genomic group II (2, 3A, 4A and 6); the second fragment contained two open reading frames (ORF2 and ORF3), separated by 658 nt, and was detected in all races. All three ORFs had G+C ratios (469–48 mol%) that were significantly less than that for and each was preceded by a potential box promoter. In pv. , ORF1 and ORF2 each elicited a strong non-host hypersensitive reaction on bean leaves; ORF1 was designated , the product of which had strong similarity to AvrRxv, AvrBsT and YopP. ORF2 was identical to a gene, designated , previously isolated from pv. race 5. ORF3 was always found in association with and both were detected in a wide range of pathovars. In contrast, was only detected in strains of pv. genomic group II and pv. (ICMP 3113). In pv. , was plasmid-borne and and ORF3 were chromosomal. This conservation of flanking sequences has implications for the horizontal transfer of avirulence and virulence genes, suggesting that specific regions of the bacterial genome act as sites for their integration/excision.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-5-1171
2001-05-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/5/1471171a.html?itemId=/content/journal/micro/10.1099/00221287-147-5-1171&mimeType=html&fmt=ahah

References

  1. Alfano J. R., Charkowski A. O., Deng W., Badel J. L., Pentnicki-Ocwieja T., Collmer A, van Dijk K.. 2000; The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci USA97:4856–4861[CrossRef]
    [Google Scholar]
  2. Arnold D. L., Athey-Pollard A., Gibbon M. J., Taylor J. D., Vivian A. 1996; Specific oligonucleotide primers for the identification of Pseudomonas syringae pv. pisi yield one of two possible DNA fragments by PCR amplification: evidence for phylogenetic divergence. Physiol Mol Plant Pathol49:233–245[CrossRef]
    [Google Scholar]
  3. Arnold D. L., Jackson R. W., Vivian A. 2000; Evidence for the mobility of an avirulence gene, avrPpiA1 , between the chromosome and plasmids of races of Pseudomonas syringae pv. pisi . Mol Plant Pathol1:195–199[CrossRef]
    [Google Scholar]
  4. Bender C., Liyanage H., Palmer D., Ullrich M., Young S., Mitchell R. 1993; Characterization of the genes controlling the biosynthesis of the polyketide phytotoxin coronatine including conjugation between coronafacic acid and coronamic acid. Gene133:31–38[CrossRef]
    [Google Scholar]
  5. Bevan J. R., Taylor J. D., Crute I. R., Hunter P. J., Vivian A. 1995; Genetic analysis of resistance in Pisum sativum cultivars to specific races of Pseudomonas syringae pathovar pisi . Plant Pathol44:98–108[CrossRef]
    [Google Scholar]
  6. Bonas U., Stall R. E., Staskawicz B. J. 1989; Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria . Mol Gen Genet218:127–136[CrossRef]
    [Google Scholar]
  7. Ciesiolka L. D., Hwin T., Gearlds J. D.. 11 other authors 1999; Regulation of expression of avirulence gene avrRxv and identification of a family of host interaction factors by sequence analysis of avrBsT . Mol Plant-Microbe Interact12:35–44[CrossRef]
    [Google Scholar]
  8. Cournoyer B., Sharp J. D., Astuto A., Gibbon M. J., Taylor J. D., Vivian A. 1995; Molecular characterization of the Pseudomonas syringae pv. pisi plasmid-borne avirulence gene avrPpiB which matches the R3 resistance locus in pea. Mol Plant-Microbe Interact8:700–708[CrossRef]
    [Google Scholar]
  9. Cuppels D. A. 1986; Generation and characterization of Tn 5 insertion mutations in Pseudomonas syringae pv. tomato . Appl Environ Microbiol51:323–327
    [Google Scholar]
  10. Dangl J. L., Ritter C., Gibbon M. J., Mur L. A. J., Wood J. R., Goss S., Mansfield J., Taylor J. D., Vivian A. 1992; Functional homologs of the Arabidopsis RPM1 disease resistance gene in bean and pea. Plant Cell4:1359–1369[CrossRef]
    [Google Scholar]
  11. DeLey J. 1968; DNA base composition and hybridization in the taxonomy of phytopathogenic bacteria. Annu Rev Phytopathol6:63–90[CrossRef]
    [Google Scholar]
  12. Errington J., Vivian A. 1981; An indigenous system of gene transfer in the plant pathogen Pseudomonas morsprunorum . J Gen Microbiol124:439–442
    [Google Scholar]
  13. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem132:6–13[CrossRef]
    [Google Scholar]
  14. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function derived in trans . Proc Natl Acad Sci USA76:1648–1652[CrossRef]
    [Google Scholar]
  15. Fillingham A. J. 1994; Avirulence genes from Pseudomonas syringae pv. pisi controlling species specificity towards Phaseolus vulgaris L PhD thesis Wye College, University of London;
    [Google Scholar]
  16. Fillingham A. J., Wood J., Bevan J. R., Crute I. R., Mansfield J. W., Taylor J. D., Vivian A. 1992; Avirulence genes from Pseudomonas syringae pathovars phaseolicola and pisi confer specificity towards both host and non-host species. Physiol Mol Plant Pathol40:1–15[CrossRef]
    [Google Scholar]
  17. Gardan L., Shafik H., Belouin S., Broch R., Grimont F., Grimont P. A. D. 1999; DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp.nov. and Pseudomonas cannabina sp. nov. ( ex Sutic and Dowson 1959). Int J Syst Bacteriol49:469–478[CrossRef]
    [Google Scholar]
  18. Gibbon M. J., Jenner C., Mur L. A. J., Puri N., Mansfield J. W., Taylor J. D., Vivian A. 1997; Avirulence gene avrPpiA from Pseudomonas syringae pv. pisi is not required for full virulence on pea. Physiol Mol Plant Pathol50:219–236[CrossRef]
    [Google Scholar]
  19. Gilmartin C. R. 1997; The detection and characterisation of avirulence genes in Pseudomonas syringae pathovars. PhD thesis University of the West of England; Bristol:
    [Google Scholar]
  20. Goss S. C. 1995; The role of avirulence genes in the interactions between Pseudomonas syringae pathovars and non-host plant species. PhD thesis Wye College, University of London;
    [Google Scholar]
  21. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580[CrossRef]
    [Google Scholar]
  22. Harper S., Zewdie N., Brown I. R., Mansfield J. W. 1987; Histological, physiological and genetical studies of the responses of leaves and pods of Phaseolus vulgaris to three races of Pseudomonas syringae pv.phaseolicola and Pseudomonassyringae pv. coronafaciens . Physiol Mol Plant Pathol31:153–172[CrossRef]
    [Google Scholar]
  23. Hendson H., Hildebrand D. C., Schroth M. N. 1992; Relatedness of Pseudomonas syringae pv. tomato , Pseudomonas syringae pv. maculicola and Pseudomonas syringae pv. antirrhini . J Appl Bacteriol73:455–464[CrossRef]
    [Google Scholar]
  24. Innes R. W., Bent A. F., Kunkel B. N., Bisgrove S. R., Staskawicz B. J. 1993; Molecular analysis of avirulence gene avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J Bacteriol175:4859–4869
    [Google Scholar]
  25. Jackson R. W., Athanassopoulos E., Tsiamis G.. 7 other authors 1999; Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola . Proc Natl Acad Sci USA96:10875–10880[CrossRef]
    [Google Scholar]
  26. Keen N. T. 1990; Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet24:421–440
    [Google Scholar]
  27. Kim J. F., Charkowski A. O., Alfano J. A., Collmer A., Beer S. V. 1998; Sequences related to transposable elements and bacteriophages flank avirulence genes of Pseudomonas syringae . Mol Plant-Microbe Interact11:1247–1252[CrossRef]
    [Google Scholar]
  28. Kim J. J., Sundin G. W. 2000; Regulation of the rulAB mutagenic DNA repair operon of Pseudomonas syringae by UV-B (290–320 nanometers) radiation and analysis of rulAB -mediated mutability in vitro and in planta. J Bacteriol182:6137–6144[CrossRef]
    [Google Scholar]
  29. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med44:301–307
    [Google Scholar]
  30. Kjemtrup S., Nimchuk Z., Dangl J. L. 2000; Effector proteins of phytopathogenic bacteria: bifunctional signals in virulence and host recognition. Curr Opin Microbiol3:73–78[CrossRef]
    [Google Scholar]
  31. Kobayashi D. Y., Tamaki S. J., Keen N. T. 1989; Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pv. tomato confer cultivar specificity on soybean. Proc Natl Acad Sci USA86:157–161[CrossRef]
    [Google Scholar]
  32. Kobayashi D. Y., Tamaki S. J., Keen N. T. 1990; Molecular characterization of avirulence gene D from Pseudomonas syringae pv. tomato . Mol Plant-Microbe Interact3:94–102[CrossRef]
    [Google Scholar]
  33. Kovach M. E., Phillips R. W., Elzer P. H. M., Peterson K., Roop R. M. II. 1994; pBBR1MCS: broad-host-range cloning vector. Biotechniques16:800–802
    [Google Scholar]
  34. Kovach M. E., Elzer P. H., Hills D. S., Robertson G. T., Farris M. A., Roop R. M.II, Peterson K. M. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176[CrossRef]
    [Google Scholar]
  35. Mansfield J., Jenner C., Hockenhull R., Bennett M. A., Stewart R. 1994; Characterization of avrPphE , a gene for cultivar-specific avirulence from Pseudomonas syringae pv. phaseolicola which is physically linked to hrpY , a new hrp gene identified in the halo blight bacterium. Mol Plant-Microbe Interact7:726–739[CrossRef]
    [Google Scholar]
  36. Miller J. H. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Mills S. D., Boland A., Sory M., Kerbourch C., Finlay B. B., Cornelis G. R, van der Smissen P.. 1997; Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein. Proc Natl Acad Sci USA94:12638–12643[CrossRef]
    [Google Scholar]
  38. Moulton P. J., Vivian A., Hunter P. J., Taylor J. D. 1993; Changes in cultivar-specificity toward pea can result from transfer of plasmid RP4 and other incompatibility group P1 replicons to Pseudomonas syringae pv. pisi . J Gen Microbiol139:3149–3155[CrossRef]
    [Google Scholar]
  39. Mudgett M. B., Staskawicz B. J. 1998; Protein signalling via type III secretion pathways in phytopathogenic bacteria. Curr Opin Microbiol1:109–114[CrossRef]
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Sesma A., Sundin G. W., Murillo J. 1998; Closely related plasmid replicons coexisting in the phytopathogen Pseudomonas syringae show a mosaic organization of the replication region and altered incompatibility behavior. Appl Environ Microbiol64:3948–3953
    [Google Scholar]
  42. Simonich M. T., Innes R. W. 1995; A disease resistance gene in Arabidopsis with specificity for the avrPph3 gene of Pseudomonas syringae pv. phaseolicola . Mol Plant-Microbe Interact8:637–640[CrossRef]
    [Google Scholar]
  43. Smith B. T., Walker G. C. 1998; Mutagenesis and more: umuDC and the Escherichia coli SOS response. Genetics148:1599–1610
    [Google Scholar]
  44. Staskawicz B., Dahlbeck D., Keen N., Napoli C. 1987; Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea . J Bacteriol169:5789–5794
    [Google Scholar]
  45. Sundin G. W., Murillo J. 1999; Functional analysis of the Pseudomonas syringae rulAB determinant in tolerance to ultraviolet B (290–320 nm) radiation and distribution of rulAB among P. syringae pathovars. Environ Microbiol1:75–87[CrossRef]
    [Google Scholar]
  46. Taylor J. D., Bevan J. R., Crute I. R., Reader S. L. 1989; Genetic relationship between races of Pseudomonas syringae pv. pisi and cultivars of Pisum sativum . Plant Pathol38:364–375[CrossRef]
    [Google Scholar]
  47. Taylor J. D., Teverson D. M., Allen D. J., Pastor-Corrales M. A. 1996; Identification and origin of races of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areas. Plant Pathol45:469–478[CrossRef]
    [Google Scholar]
  48. Tsiamis G., Mansfield J. W., Hockenhull R.. 8 other authors 2000; Cultivar-specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv. phaseolicola , the cause of bean halo-blight disease. EMBO J19:3204–3214[CrossRef]
    [Google Scholar]
  49. Ullrich M., Fritsche W., Geider K, Völksch B.. 1993; Molecular characterization of field isolates of Pseudomonas syringae pv. glycinea differing in coronatine production. J Gen Microbiol139:1927–1937[CrossRef]
    [Google Scholar]
  50. Vivian A., Arnold D. L. 2000; Bacterial effector genes and their role in host-pathogen interactions. J Plant Pathol82:163–178
    [Google Scholar]
  51. Vivian A., Gibbon M. J. 1997; Avirulence genes in plant-pathogenic bacteria: signals or weapons?. Microbiology143:693–704[CrossRef]
    [Google Scholar]
  52. Vivian A., Mansfield J. 1993; A proposal for a uniform genetic nomenclature for avirulence genes in phytopathogenic pseudomonads. Mol Plant-Microbe Interact6:9–10[CrossRef]
    [Google Scholar]
  53. Vivian A., Atherton G. T., Bevan J. R., Crute I. R., Mur L. A. J., Taylor J. D. 1989; Isolation and charaterization of cloned DNA conferring specific avirulence in Pseudomonas syringae pathovar pisi to pea ( Pisum sativum ) cultivars, which possess the resistance allele, R2. Physiol Mol Plant Pathol34:335–344[CrossRef]
    [Google Scholar]
  54. Whalen M. C., Wang J. F., Carland F. M.. 7 other authors 1993; Avirulence gene avrRxv from Xanthomonas campestris pv. vesicatoria specifies resistance on tomato line Hawaii 7998. Mol Plant-Microbe Interact6:616–627[CrossRef]
    [Google Scholar]
  55. Wood J. R., Vivian A., Jenner C., Mansfield J. W., Taylor J. D. 1994; Detection of a gene in pea controlling nonhost resistance to Pseudomonas syringae pv. haseolicola . Mol Plant-Microbe Interact7:534–537[CrossRef]
    [Google Scholar]
  56. Yang Y., Yuan Q., Gabriel D. W. 1996; Watersoaking function(s) of XcmH1005 are redundantly encoded by members of the Xanthomonas avr/pth gene family. Mol Plant-Microbe Interact9:105–113[CrossRef]
    [Google Scholar]
  57. Yeo C. C., Wong D. T. S., Poh C. L. 1998; IS 1491 from Pseudomonas alcaligenes NCIB 9867: characterization and distribution among Pseudomonas species. Plasmid39:187–195[CrossRef]
    [Google Scholar]
  58. Yucel I., Slaymaker D., Boyd C., Murillo J., Buzzell R. I., Keen N. T. 1994; Avirulence gene avrPphC from Pseudomonas syringae pv. phaseolicola 3121: a plasmid-borne homologue of avrC closely linked to an avrD allele. Mol Plant-Microbe Interact7:677–679[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-5-1171
Loading
/content/journal/micro/10.1099/00221287-147-5-1171
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error