1887

Abstract

The authors examined the ability of octadecanoyl (C), hexadecanoyl (C) and dodecanoyl (C) fatty acid (FA) conjugates of 5-aminofluorescein (OAF, HAF and DAF, respectively) to insert into the outer membranes (OMs) of , and . Biophysical studies have demonstrated that these compounds stably insert into phospholipid bilayers with the acyl chain within the hydrophobic interior of the apical leaflet and the hydrophilic fluorescein moiety near the phospholipid head groups. Consistent with the known poor intrinsic permeability of the OM to hydrophobic compounds and surfactants, was not labelled with any of the FA probes. OAF inserted more readily into OMs of than into those of , although both organisms were completely labelled at concentrations at or below 2 μg ml. Intact spirochaetes were labelled with OAF but not with antibodies against known periplasmic antigens, thereby confirming that the probe interacted exclusively with the spirochaetal OMs. Separate experiments in which organisms were cooled to 4 °C (i.e. below the OM phase-transition temperatures) indicated that labelling with OAF was due to insertion of the probe into the OMs. , but not , was labelled by relatively high concentrations of HAF and DAF. Taken as a whole, these findings support the prediction that the lack of lipopolysaccharide renders and OMs markedly more permeable to lipophilic compounds than their Gram-negative bacterial counterparts. The data also raise the intriguing possibility that these two pathogenic spirochaetes obtain long-chain FAs, nutrients they are unable to synthesize, by direct permeation of their OMs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-5-1161
2001-05-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/5/1471161a.html?itemId=/content/journal/micro/10.1099/00221287-147-5-1161&mimeType=html&fmt=ahah

References

  1. Akins D. R., Bourell K. W., Caimano M. J., Norgard M. V., Radolf J. D. 1998; A new animal model for studying Lyme disease spirochaetes in a mammalian host-adapted state. J Clin Invest 101:2240–2250 [CrossRef]
    [Google Scholar]
  2. Araiso T., Saito H., Shirahama H., Koyama T. 1990; Analysis for the molecular motion of phospholipid bilayer with picosecond fluorometry. Biorheology 27:375–387
    [Google Scholar]
  3. Belisle J. T., Brandt M. E., Radolf J. D., Norgard M. V. 1994; Fatty acids of Treponema pallidum and Borrelia burgdorferi lipoproteins. J Bacteriol 176:2151–2157
    [Google Scholar]
  4. Blanco D. R., Reimann K., Skare J., Champion C., Foley D., Exner M. M., Handcock R. E., Miller J. N., Lovett M. A. 1994; Isolation of the outer membrane from Treponema pallidum and Treponema vincentii . J Bacteriol 176:6088–6099
    [Google Scholar]
  5. Bourell K. W., Schulz W., Norgard M. V., Radolf J. D. 1994; Treponema pallidum rare outer membrane proteins: analysis of mobility by freeze-fracture electron microscopy. J Bacteriol 176:1598–1608
    [Google Scholar]
  6. Boye E., Steen H. B., Skarstad K. 1983; Flow cytometry of bacteria: a promising tool in experimental and clinical microbiology. J Gen Microbiol 129:973–980
    [Google Scholar]
  7. Bunikis J., Barbour A. G. 1998; Access of antibody or trypsin to an integral outer membrane protein (P66) of Borrelia burgdorferi is hindered by Osp lipoproteins. Infect Immun 67:2874–2883
    [Google Scholar]
  8. Caimano M. J., Bourell K. W., Bannister T. D., Cox D. L., Radolf J. D. 1999; The Treponema denticola major sheath protein is predominantly periplasmic and has only limited surface exposure. Infect Immun 67:4072–4083
    [Google Scholar]
  9. Chamberlain N. R., Brandt M. E., Erwin A. L., Radolf J. D., Norgard M. V. 1989; Major integral membrane protein immunogens of Treponema pallidum are proteolipids. Infect Immun 57:2872–2877
    [Google Scholar]
  10. Christensen H., Garton N. J., Horobin R. W., Minnikin D. E., Barer M. R. 1999; Lipid domains of mycobacteria studies with fluorescent molecular probes. Mol Microbiol 31:1561–1572 [CrossRef]
    [Google Scholar]
  11. Clark D. P., Cronan J. E. Jr others 1996; Two-carbon compounds and fatty acids as carbon sources. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp 343–357 Edited by Neidhart F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Cox D. L., Riley B., Chang P., Sayahtaheri S., Tassell S., Hevelone J. 1990; Effects of molecular oxygen, oxidation-reduction potential, and antioxidants upon in vitro replication of Treponema pallidum subsp. pallidum . Appl Environ Microbiol 56:3063–3072
    [Google Scholar]
  13. Cox D. L., Chang P., McDowell A., Radolf J. D. 1992; The treponemal outer membrane, not an outer coat of host proteins, is responsible for the limited antigenicity of virulent Treponema pallidum . Infect Immun 60:1076–1083
    [Google Scholar]
  14. Cox D. L., Akins D. R., Porcella S. F., Norgard M. V., Radolf J. D. 1995; Treponema pallidum in gel microdroplets: a novel strategy for investigation of treponemal molecular architecture. Mol Microbiol 15:1151–1164 [CrossRef]
    [Google Scholar]
  15. Cox D. L., Akins D. R., Bourell K. W., Lahdenne P., Norgard M. V., Radolf J. D. 1996; Limited surface exposure of Borrelia burgdorferi outer surface lipoproteins. Proc Natl Acad Sci USA 93:7973–7978 [CrossRef]
    [Google Scholar]
  16. Cramer D. L., Brown J. B. 1943; Component fatty acids of human depot fat. J Biol Chem 151:427–438
    [Google Scholar]
  17. Derzko Z., Jacobson K. 1980; Comparative lateral diffusion of fluorescent lipid analogues in phospholipid multibilayers. Biochemistry 19:6050–6057 [CrossRef]
    [Google Scholar]
  18. Foley M., MacGregor A. N., Kusel J. R., Garland P. B., Bownie T., Moore I. 1986; The lateral diffusion of lipid probes in the surface membrane of Schistosoma mansoni . J Cell Biol 103:807–818 [CrossRef]
    [Google Scholar]
  19. Fraser C. M., Casjens S., Huang W. M. 35 other authors 1997; Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi . Nature 390:580–586 [CrossRef]
    [Google Scholar]
  20. Fraser C. M., Norris S. J., Weinstock G. M. 30 other authors 1998; Complete genome sequence of Treponema pallidum , the syphilis spirochaete. Science 281:375–388 [CrossRef]
    [Google Scholar]
  21. Gennis R. B. 1989a; Interactions of small molecules with membranes: partitioning, permeability, and electrical effects. In Biomembranes: Molecular Structure and Function pp 235–269 Berlin & New York: Springer;
    [Google Scholar]
  22. Gennis R. B. 1989b; The structures and properties of membrane lipids. In Biomembranes: Molecular Structure and Function pp 36–84 Berlin & New York: Springer;
    [Google Scholar]
  23. Haugland R. P. 1996 Handbook of Fluorescent Probes and Research Chemicals Eugene, OR: Molecular Probes;
    [Google Scholar]
  24. Heine H. G., Francis G., Lee K. S., Ferenci T. 1988; Genetic analysis of sequences in maltoporin that contribute to binding domains and pore structure. J Bacteriol 170:1730–1738
    [Google Scholar]
  25. Lahdenne P., Porcella S. F., Hagman K. E., Akins D. R., Popova T. G., Cox D. L., Katona L. I., Radolf J. D., Norgard M. V. 1997; Molecular characterization of a 6·6-kilodalton Borrelia burgdorferi outer membrane-associated lipoprotein (lp6.6) which appears to be downregulated during mammalian infection. Infect Immun 65:412–421
    [Google Scholar]
  26. Magnuson H. J., Eagle H., Fleischman R. 1948; The minimal infectious inoculum of Spirochaeta pallida (Nichols strain), and a consideration of its rate of multiplication in vivo. Am J Syph Gon Vener Dis 32:1–19
    [Google Scholar]
  27. Martinez O. V., Gratzner H. G., Malinin T. I. 1982; The effect of beta-lactam antibiotics on Escherichia coli studied by flow cytometry. Cytometry 3:129–133 [CrossRef]
    [Google Scholar]
  28. Nikaido H. others 1996; Outer membrane. In Escherichia coli and Salmonella: Cellular and Molecular Biology pp 29–47 Edited by Neidhart F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Radolf J. D. 1995; Treponema pallidum and the quest for outer membrane proteins. Mol Microbiol 16:1067–1073 [CrossRef]
    [Google Scholar]
  30. Radolf J. D., Norgard M. V., Schulz W. W. 1989; Outer membrane ultrastructure explains the limited antigenicity of virulent Treponema pallidum . Proc Natl Acad Sci USA 86:2051–2055 [CrossRef]
    [Google Scholar]
  31. Radolf J. D., Bourell K. W., Akins D. R., Brusca J. S., Norgard M. V. 1994; Analysis of Borrelia burgdorferi membrane architecture by freeze-fracture electron microscopy. J Bacteriol 176:21–31
    [Google Scholar]
  32. Radolf J. D., Goldberg M. S., Bourell K. W., Baker S. I., Jones J. D., Norgard M. V. 1995a; Characterization of outer membranes isolated from Borrelia burgdorferi , the Lyme disease spirochaete. Infect Immun 63:2154–2163
    [Google Scholar]
  33. Radolf J. D., Robinson E. J., Bourell K. W., Akins D. R., Porcella S. F., Weigel L. M., Jones J. D., Norgard M. V. 1995b; Characterization of outer membranes isolated from Treponema pallidum , the syphilis spirochaete. Infect Immun 63:4244–4252
    [Google Scholar]
  34. Roepe P. D., Consler T. G., Menges M. E., Kuback H. R. 1990; The Lac permease of Escherichia coli . Site directed mutagenic studies on the mechanism of β-galactoside/H+ symport. Res Microbiol 141:290–308 [CrossRef]
    [Google Scholar]
  35. Schiller N. L., Cox C. D. 1977; Catabolism of glucose and fatty acids by virulent Treponema pallidum . Infect Immun 16:60–68
    [Google Scholar]
  36. Shapiro H. M. 1988 Practical Flow Cytometry , 2nd edn. New York: Alan R. Liss;
    [Google Scholar]
  37. Shevchenko D. V., Akins D. R., Robinson E., Li M., Popova T. G., Cox D. L., Radolf J. D. 1997; Molecular characterization and cellular location of TpLRR, a processed leucine-rich repeat protein of Treponema pallidum , the syphilis spirochete. J Bacteriol 179:3188–3195
    [Google Scholar]
  38. Shevchenko D. V., Sellati T. J., Robinson E., Cox D. L., Shevchenko O. V., Robinson E., Radolf J. D. 1999; Membrane topology and cellular location of the Treponema pallidum glycerophosphodiester phosphodiesterase (GlpQ) ortholog. Infect Immun 67:2266–2276
    [Google Scholar]
  39. Simpson W. J., Schrumpf M. E., Hayes S. F., Schwan T. G. 1991; Molecular and immunological analysis of a polymorphic periplasmic protein of Borrelia burgdorferi . J Clin Microbiol 29:1940–1948
    [Google Scholar]
  40. Sklar L. A., Doody M. C., Gotto A. M., Pownall H. J. 1980; Serum lipoprotein structure: resonance energy transfer localization of fluorescent lipid probes. Biochemistry 19:1294–1301 [CrossRef]
    [Google Scholar]
  41. Stolz D. B., Mahoney M. G., Jacobson B. S. 1992; The impenetrability of 5-( N -hexadecanoyl) aminofluorescein through endothelial cell monolayers is dependent upon its solution properties, not the presence of tight junctions. Biochem Biophys Res Commun 184:160–166 [CrossRef]
    [Google Scholar]
  42. Tocanne J. F., Dupou-Cézanne L., Lopez A., Tournier J. F. 1989; Lipid lateral diffusion and membrane organization. FEBS Lett 257:10–16 [CrossRef]
    [Google Scholar]
  43. Treptow N. A., Shuman H. A. 1985; Genetic evidence for substrate and periplasmic binding – protein recognition by the MalF and MalG proteins, cytoplasmic membrane components of the Escherichia coli maltose transport system. J Bacteriol 163:654–660
    [Google Scholar]
  44. Vogele R. T., Sweet G. D., Boos W. 1993; Glycerol kinase of Escherichia coli is activated by interaction with the glycerol facilitator. J Bacteriol 175:1087–1094
    [Google Scholar]
  45. Waldman F. M., Hadley W. K., Fulwyler M. J., Schachter J. 1987; Flow cytometric analysis of Chlamydia trachomatis interaction with L cells. Cytometry 8:55–59 [CrossRef]
    [Google Scholar]
  46. Walker E. M., Zampighi G. A., Blanco D. R., Miller J. N., Lovett M. A. 1989; Demonstration of rare protein in the outer membrane of Treponema pallidum subsp. pallidum by freeze-fracture analysis. J Bacteriol 171:5005–5011
    [Google Scholar]
  47. Walker E. M., Borenstein L. A., Blanco D. R., Miller J. N., Lovett M. A. 1991; Analysis of outer membrane ultrastructures of pathogenic Treponema and Borrelia species by freeze-fracture electron microscopy. J Bacteriol 173:5585–5588
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-5-1161
Loading
/content/journal/micro/10.1099/00221287-147-5-1161
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error