1887

Abstract

Arylamine -acetyltransferases (NATs) are enzymes involved in the detoxification of a range of arylamine and hydrazine-based xenobiotics. NATs have been implicated in the endogenous metabolism of -aminobenzoyl glutamate in eukaryotes, although very little is known about the distribution and function of NAT in the prokaryotic kingdom. Using DNA library screening techniques and the analysis of data from whole-genome sequencing projects, we have identified 18 -like sequences from the and . Recently, the three-dimensional structure of NAT derived from the bacterium (PDB accession code 1E2T) was resolved and revealed an active site catalytic triad composed of Cys-His-Asp. These residues have been shown to be conserved in all prokaryotic and eukaryotic NAT homologues together with three highly conserved regions which are found proximal to the active site triad. The characterization of prokaryotic NATs and NAT-like enzymes is reported. It is also predicted that prokaryotic NATs, based on gene cluster composition and distribution amongst genomes, participate in the metabolism of xenobiotics derived from decomposition of organic materials.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-5-1137
2001-05-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/5/1471137a.html?itemId=/content/journal/micro/10.1099/00221287-147-5-1137&mimeType=html&fmt=ahah

References

  1. Andres H. H., Kolb H. J., Schreiber R. J., Weiss L. 1983; Characterisation of the active site, substrate specificity and kinetic properties of acetyl-CoA: arylamine N -acetyltransferase from pigeon liver. Biochim Biophys Acta746:193–201[CrossRef]
    [Google Scholar]
  2. Blum M., Grant D. M., McBride W., Heim M., Meyer U. A. 1990; Human arylamine N -acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol9:193–203[CrossRef]
    [Google Scholar]
  3. Blum M., Demierre A., Grant D. M., Heim M., Meyer U. A. 1992; Molecular mechanism of slow acetylation of drugs and carcinogens in humans. Proc Natl Acad Sci USA88:5237–5241
    [Google Scholar]
  4. Chang F. C., Chung J. G. 1998; Evidence for arylamine N -acetyltransferase activity in the Escherichia coli . Curr Microbiol36:125–130[CrossRef]
    [Google Scholar]
  5. Cole S. T., Brosch R., Parkhill J.. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544[CrossRef]
    [Google Scholar]
  6. Cribb A. E., Grant D. M., Miller M. A., Spielberg S. P. 1991; Expression of monomorphic arylamine N -acetyltransferase (NAT1) in human leukocytes. J Pharmacol Exp Ther259:1241–1246
    [Google Scholar]
  7. Deguchi T., Mashimoto M., Suzuki T. 1990; Correlation between acetylator phenotypes and genotypes of polymorphic arylamine N -acetyltransferase in human liver. J Biol Chem265:12757–12760
    [Google Scholar]
  8. Delomenie C., Goodfellow G. H., Krishnamoorthy R., Grant D. M., Dupret J. M. 1997; Study of the role of the highly conserved residues Arg(9) and Arg(64) in the catalytic function of human N -acetyltransferases NAT1 and NAT2 by site-directed mutagenesis. Biochem J323:207–215
    [Google Scholar]
  9. Ellard G. A., Gammon P. T. 1976; Pharmacokinetics of isoniazid metabolism in man. Biopharm4:83–113
    [Google Scholar]
  10. Engel C., Wierenga R. 1996; The diverse world of coenzyme A binding proteins. Curr Opin Struct Biol6:790–797[CrossRef]
    [Google Scholar]
  11. Evans D. A. P., Manley K. A., McKuisick V. A. 1960; Genetic control of isoniazid acetylation in man. Br Med J2:485–491[CrossRef]
    [Google Scholar]
  12. Floss H., Yu T.-W. 1999; Lessons from the rifamycin biosynthetic gene cluster. Curr Opin Chem Biol3:592–597[CrossRef]
    [Google Scholar]
  13. French C., Rosser S., Davies G., Nicklin S., Bruce N. 1999; Biodegradation of explosives by transgenic plants expressing pentaerythritol and tetranitrate reductase. Nat Biotechnol17:491–494[CrossRef]
    [Google Scholar]
  14. Fulco A. 1991; P450BM-3 and other inducible P450 cytochromes: biochemistry and regulation. Annu Rev Pharmacol Toxicol31:177–203[CrossRef]
    [Google Scholar]
  15. Hanna P. 1996; Metabolic activation and detoxification of arylamines. Curr Med Chem3:195–210
    [Google Scholar]
  16. Hein D., Grant D., Sim E. 2000; Update on consensus arylamine N -acetyltransferase gene nomenclature. Pharmacogenetics10:1–2[CrossRef]
    [Google Scholar]
  17. Hickman D., Palamanda J., Unadkat J., Sim E. 1995; Enzyme kinetic properties of human recombinant arylamine N -acetyltransferase 2 allotypic variants expressed in E. coli . Biochem Pharmacol50:697–703[CrossRef]
    [Google Scholar]
  18. Hinds J., Mahenthiralingham E., Kempsell K., Duncan K., Stokes R., Parish T., Stoker N. 1999; Enhanced gene replacement in mycobacteria. Microbiology145:519–527[CrossRef]
    [Google Scholar]
  19. Hubbard T., Tramontano A., Team I. W. 1996; Update on protein structure prediction: results of the 1995 IRBM workshop. Folding Design1:R55–R63[CrossRef]
    [Google Scholar]
  20. King C. M., Land S. J., Jones R. F., Debiec-Rychter M., Lee M. S., Wang C. Y. 1997; Role of acetyltransferases in the metabolism and carcinogenicity of aromatic amines. Mutat Res12:123–128
    [Google Scholar]
  21. Kinoshita K., Sadanami K., Kidera A., Go N. 1999; Structural motif of phosphate-binding site common to various protein superfamilies: all-against-all structural comparison of protein-mononucleotide complexes. Protein Eng12:11–14[CrossRef]
    [Google Scholar]
  22. Kunst F., Ogasawara N., Moszer I.. 148 other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis . Nature390:249–256[CrossRef]
    [Google Scholar]
  23. McCoy E., Anders M., Rosenkranz H. 1983; The basis of the insensitivity of Salmonella typhimurium strain TA98/1,8-DNP6 to the mutagenic action of nitroarenes. Mutat Res121:17–23[CrossRef]
    [Google Scholar]
  24. Minchin R. F. 1995; Acetylation of para -aminobenzoylglutamate, a folate catabolite, by recombinant human NAT and U937 cells. Biochem J307:1–3
    [Google Scholar]
  25. Ohsako S., Deguchi T. 1990; Cloning and expression of cDNAs for polymorphic and monomorphic arylamine N -acetyltransferases of human liver. J Biol Chem265:4630–4634
    [Google Scholar]
  26. Parish T., Stoker N. 1998; Mycobacterial Protocols New Jersey: Humana;
    [Google Scholar]
  27. Parish T., Mahenthiralingam E., Draper P., Davis E. O., Colston M. J. 1997; Regulation of the inducible amidase gene of Mycobacterium smegmatis . Microbiology143:2267–2276[CrossRef]
    [Google Scholar]
  28. Payton M., Pinter K. 1999; A rapid and novel method for the extraction of RNA from wild-type and genetically modified kanamycin-resistant mycobacteria. FEMS Microbiol Lett180:141–146[CrossRef]
    [Google Scholar]
  29. Payton M., Auty R., Delgoda R., Everett M., Sim E. 1999; Cloning and characterisation of arylamine N -acetyltransferase genes of M. smegmatis and M. tuberculosis : increased expression results in isoniazid resistance. J Bacteriol181:1343–1347
    [Google Scholar]
  30. Poupin P., Godon J., Zumstein E., Truffaut N. 1999; Degradation of morpholine, piperidine, and pyrolidine by mycobacteria: evidence for the involvement of cytochrome P450. Can J Microbiol45:209–216[CrossRef]
    [Google Scholar]
  31. Risch A., Wallace D. M., Bathers S., Sim E. 1995; Slow N-acetylation genotype is a susceptibility factor in occupational and smoking related bladder cancer. Hum Mol Genet4:231–236[CrossRef]
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Schupp T., Toupet C., Engel N., Goff S. 1998; Cloning and sequence analysis of the putative rifamycin polyketide synthase gene cluster from Amycolatopsis mediterranei . FEMS Microbiol Lett159:201–207[CrossRef]
    [Google Scholar]
  34. Sim E., Payton M., Noble M., Minchin R. 2000; An update on genetic, structural and functional studies of arylamine N -acetyltransferases in eucaryotes and procaryotes. Hum Mol Genet9:2435–2441[CrossRef]
    [Google Scholar]
  35. Sinclair J., Sim E. 1997; A fragment consisting of the first 204 amino-terminal amino acids of human arylamine N -acetyl transferase one (NAT1) and the first transacetylation step of catalysis. Biochem Pharmacol53:11–16[CrossRef]
    [Google Scholar]
  36. Sinclair J., Delgoda R., Noble M., Jarmin S., Goh N., Sim E. 1998; Purification, characterisation and crystallisation of an N -hydroxyarylamine O -acetyltransferase from Salmonella typhimurium . Protein Expr Purif12:371–380[CrossRef]
    [Google Scholar]
  37. Sinclair J., Sandy J., Delgoda R., Sim E., Noble M. 2000; The crystal structure of arylamine N -acetyltransferase reveals a catalytic triad. Nat Struct Biol7:560–564[CrossRef]
    [Google Scholar]
  38. Sohng J.-K., Oh T.-J., Lee J.-J., Kim C.-G. 1997; Identification of a gene cluster of biosynthetic genes of rubradirin substructures in S. achromogenes var. rubradis NRRL3061. Mol Cell7:674–681
    [Google Scholar]
  39. Tang L., Yoon Y., Choi C.-Y., Hutchinson C. 1998; Characterisation of the enzymatic domains in the modular polyketide synthase involved in rifamycin B biosynthesis by Amycolatopsis mediterranei . Gene216:255–265[CrossRef]
    [Google Scholar]
  40. Vatsis K. P., Weber W. W., Bell D. A.. 10 other authors 1995; Nomenclature for N -acetyltransferases. Pharmacogenetics5:1–17[CrossRef]
    [Google Scholar]
  41. Ward A., Summers M., Sim E. 1995; Purification of recombinant human NAT1 expressed in E. coli . Biochem Pharmacol49:1759–1767[CrossRef]
    [Google Scholar]
  42. Watanabe M., Sofuni T., Nohmi T. 1992; Involvement of Cys69 residue in the catalytic mechanism of N -hydroxyarylamine O -acetyltransferase of Salmonella typhimurium . Sequence similarity at the amino acid level suggests a common catalytic mechanism of acetyltransferase for S. typhimurium and higher organisms. J Biol Chem267:8429–8436
    [Google Scholar]
  43. Weber W. W., Hein D. W. 1985; Arylamine N -acetyltransferases. Pharmacol Rev37:25–79
    [Google Scholar]
  44. Yu T.-W., Shen Y., Doi-Katayama Y., Tang L., Park C., Moore B., Hutchinson C., Floss H. 1999; Direct evidence that the rifamycin polyketide synthase assembles polyketide chains processively. Proc Natl Acad Sci USA96:9051–9056[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-5-1137
Loading
/content/journal/micro/10.1099/00221287-147-5-1137
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error