1887

Abstract

isolates from human sporadic and epidemic cases (=119) and from animal cases (=76) were characterized by automated ribotyping and PCR-restriction fragment length polymorphism (PCR-RFLP) typing of the virulence genes and . This combination of typing methods differentiated 39 distinctive strains, each reflecting a unique combination of ribotypes, and alleles. Simpson’s index of discrimination indicated a high discriminatory ability of ribotyping for both animal (0867) and human isolates (0857), which was further increased by the addition of and typing (0916 and 0904, respectively). Ribotype and allele data were further used to group isolates into three genetically distinct lineages. Each lineage is composed of several ribotype fragment subsets, each of which contains multiple ribotypes characterized by common ribotype fragments. To determine whether certain clones of show indications for unique pathogenic potential or host specificity, frequency distributions for five genetic characteristics (i.e. lineage, ribotype, ribotype fragment subset and and allele) were calculated for isolates from animal cases, human epidemic cases and human sporadic cases. Lineage III isolates were found less frequently in human cases (1 of 119 isolates) than in animal cases (8 of 76 isolates; =0003). These results suggest the possibility of host specificity for non-primate mammals among lineage III strains. In addition, lineage I strains were found more frequently among human cases than among animal cases (<0001). Among the eight alleles observed, allele 1 was more common among human isolates as compared to animal isolates (=0002). We also identified one ribotype (DUP-1030) which was significantly more common among animal isolates (=0005) and one ribotype (DUP-1038; lineage I) which was significantly more common among human epidemic isolates as compared to human sporadic isolates (<0001). These findings confirm the presence of clonal groups of , which appear to be characterized by unique virulence or host specificity patterns. This study also establishes baseline data describing the genetic diversity of human and animal isolates which can be utilized in future surveillance programmes to track the emergence of new strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-5-1095
2001-05-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/5/1471095a.html?itemId=/content/journal/micro/10.1099/00221287-147-5-1095&mimeType=html&fmt=ahah

References

  1. Bille J. 1990; Epidemiology of human listeriosis in Europe, with special reference to Swiss outbreak. In Foodborne Listeriosis pp71–74 Amsterdam: Elsevier;
    [Google Scholar]
  2. Bille J., Rocourt J. 1996; WHO International Multicentre Listeria monocytogenes subtyping study: rationale and set-up of the study. Int J Food Microbiol32:251–262[CrossRef]
    [Google Scholar]
  3. Boerlin P., Piffaretti J.-C. 1991; Typing of human, food and environmental isolates of Listeria monocytogenes by multilocus enzyme electrophoresis. Appl Environ Microbiol57:1624–1629
    [Google Scholar]
  4. Brosch R., Chen J., Luchansky J. B. 1994; Pulsed-field fingerprinting of listeriae: identification of genomic divisions for Listeria monocytogenes and their correlation with serovar. Appl Environ Microbiol60:2584–2592
    [Google Scholar]
  5. Bruce J. 1996; Automated system rapidly identifies and characterizes micro-organisms in food. Food Technol50:77–81
    [Google Scholar]
  6. Bruce J. L., Hubner R. J., Cole E. M., McDowell C. I., Webster J. A. 1995; Sets of Eco RI fragments containing rRNA sequences are conserved among different strains of Listeria monocytogenes . Proc Natl Acad Sci USA92:5229–5233[CrossRef]
    [Google Scholar]
  7. Carbonelle B., Cottin J., Parvery F., Chambreuil G., Kouyoumdjian S., Le Lirzin M., Cordier G., Vincent F. 1978; Epidemie de listeriose dans l’ouest de la France (1975–1976. Rev Epidemiol Sante Publique26:451–467
    [Google Scholar]
  8. Caugant D. A., Ashton F. E., Bibb W. F., Boerlin P., Donachie W., Low C., Gilmour A., Harvey J., Norrung B. 1996; Multilocus enzyme electrophoresis for characterization of Listeria monocytogenes isolates: results of an international comparative study. Int J Food Microbiol32:301–310[CrossRef]
    [Google Scholar]
  9. Chakraborty T., Ebel F., Wehland J., Dufrenne J., Notermans S. 1994; Naturally occurring virulence-attenuated isolates of Listeria monocytogenes capable of inducing long term protection against infection by virulent strains of homologous and heterologous serotypes. FEMS Immunol Med Microbiol10:1–10[CrossRef]
    [Google Scholar]
  10. Davies R. L., Arkinsaw S., Selander R. K. 1997; Evolutionary genetics of Pasteurella haemolytica isolates recovered from cattle and sheep. Infect Immun65:3585–3593
    [Google Scholar]
  11. Farber J. M., Peterkin P. I. 1991; Listeria monocytogenes , a food-borne pathogen. Microbiol Rev55:476–511
    [Google Scholar]
  12. Fleming D. W., Cochi S. L., MacDonald K. L.. 7 other authors 1985; Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. N Engl J Med312:404–407[CrossRef]
    [Google Scholar]
  13. Graves L. M., Swaminathan B., Reeves M. W., Hunter S. B., Weaver R. E., Plikaytis B. D., Schuchat A. 1994; Comparison of ribotyping and multilocus enzyme electrophoresis for subtyping Listeria monocytogenes isolates . J Clin Microbiol32:2936–2943
    [Google Scholar]
  14. Gutekunst K. A., Holloway B. P., Carlone G. M. 1992; DNA sequence heterogeneity in the gene encoding a 60-kilodalton extracellular protein of Listeria monocytogenes and other Listeria species. Can J Microbiol38:865–870[CrossRef]
    [Google Scholar]
  15. Helmig R., Uldbjerg N., Boris J., Kilian M. 1993; Clonal analysis of Streptococcus agalactiae isolated from infants with neonatal sepsis or meningitis and their mothers and from healthy pregnant women. J Infect Dis168:904–909[CrossRef]
    [Google Scholar]
  16. Ho J. L., Shands K. N., Friedland G., Eckind P., Fraser D. W. 1986; An outbreak of type 4b Listeria monocytogenes infection involving patients from eight Boston hospitals. Arch Intern Med146:520–524[CrossRef]
    [Google Scholar]
  17. Hof H., Rocourt J. 1992; Is any strain of Listeria monocytogenes detected in food a health risk?. Int J Food Microbiol16:173–182[CrossRef]
    [Google Scholar]
  18. Hunter P., Gaston M. A. 1988; Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol26:2465–2466
    [Google Scholar]
  19. Kapur V., Sischo W. M., Greer R. S., Whittam T., Musser J. M. 1995; Molecular population genetic analysis of Staphylococcus aureus recovered from cows. J Clin Microbiol33:376–380
    [Google Scholar]
  20. Lee P. K., Kreiswirth B. N., Deringer J. R., Projan S. J., Eisner W., Smith B. L., Carlson E., Novick R. P., Schlievert P. M. 1992; Nucleotide sequence and biological properties of toxic shock syndrome toxin 1 from ovine- and bovine-associated Staphylococcus aureus . J Infect Dis165:1056–1063[CrossRef]
    [Google Scholar]
  21. Linnan M. J., Mascola L., Lou X. D.. 12 other authors 1988; Epidemic listeriosis associated with Mexican-style cheese. N Engl JMed319:823–828[CrossRef]
    [Google Scholar]
  22. Louie M., Jayaratne P., Luchsinger I., Devenish J., Yao J., Schlech W., Simor I. 1996; Comparison of ribotyping, arbitrarily primed PCR and pulsed-field gel electrophoresis for molecular typing of Listeria monocytogenes . J Clin Micro34:15–19
    [Google Scholar]
  23. Marr J. C., Lyon J. D., Roberson J. R., Lupher M., Davies W. C., Bohach G. A. 1993; Characterization of novel type C staphylococcal enterotoxins: biological and evolutionary implications. Infect Immun61:4254–4262
    [Google Scholar]
  24. McLauchlin J. 1990; Distribution of serovars of Listeria monocytogenes isolated from different categories of patients with listeriosis. Eur J Clin Microbiol Infect Dis9:210–213[CrossRef]
    [Google Scholar]
  25. McLauchlin J., Audurier A., Taylor A. G. 1986; Aspects of the epidemiology of human Listeria monocytogenes infections in Britain 1967–1984; the use of serotyping and phage typing. J Med Microbiol22:367–377[CrossRef]
    [Google Scholar]
  26. McLauchlin J., Hall S. M., Velani S. K., Gilbert R. J. 1991; Human listeriosis and paté: a possible association. Br Med J303:773–775[CrossRef]
    [Google Scholar]
  27. Mead P., Slutsker L., Dietz V., McCaig L. F., Bresee J. S., Shapiro C., Griffin P. M., Tauxe R. V. 1999; Food-related illness and death in the United States. Emerg Infect Dis5:607–625[CrossRef]
    [Google Scholar]
  28. Musser J. M., Selander R. K. 1990; Genetic analysis of natural populations of Staphylococcus aureus . In Molecular Biology of the Staphylococci pp59–67 Edited by Novick R., Skurray R. A.. New York: VCH;
    [Google Scholar]
  29. Musser J. M., Bemis D. A., Ishikawa H., Selander R. K. 1987; Clonal diversity and host distribution in Bordetella bronchiseptica . J Bacteriol169:2793–2803
    [Google Scholar]
  30. Musser J. M., Mattingly S. J., Quentin R., Goudeau A., Selander R. K. 1989; Identification of a high-virulence clone of type III Streptococcus agalactiae (group B streptococcus) causing invasive neonatal disease. Proc Natl Acad Sci USA86:4731–4735[CrossRef]
    [Google Scholar]
  31. Piffaretti J.-C., Kressebuch H., Aeschenbacher M., Bille J., Bannerman E., Musser J. M., Selander R. K., Rocourt J. 1989; Genetic characterization of clones of the bacterium Listeria monocytogenes causing epidemic disease. Proc Natl Acad Sci USA86:3818–3822[CrossRef]
    [Google Scholar]
  32. Quentin R., Goudeau A., Wallace R. J., Smith A. L., Selander R. K., Musser J. M. 1990; Urogenital, maternal and neonatal isolates of Haemophilus influenzae : identification of unusually virulent serologically non-typable clone families and evidence for a new Haemophilus species. J Gen Microbiol136:1203–1209[CrossRef]
    [Google Scholar]
  33. Quentin R., Huet H., Wang F., Geslin P., Goudeau A., Selander R. 1995; Characterization of Streptococcus agalactiae strains by multilocus enzyme genotype and serotype: identification of multiple virulent clone families that cause invasive neonatal disease. J Clin Microbiol33:2576–2581
    [Google Scholar]
  34. Rasmussen O. F., Beck T., Olsen J. E., Dons L., Rossen L. 1991; Listeria monocytogenes isolates can be classified into two major types according to the sequence of the listeriolysin gene. Infect Immun59:3945–3951
    [Google Scholar]
  35. Rasmussen O. F., Skouboe P., Dons L., Rosen L., Olsen J. E. 1995; Listeria monocytogenes exists in at least three evolutionary lines: evidence from flagellin, invasive associated protein and listeriolysin O genes. Microbiology141:2053–2061[CrossRef]
    [Google Scholar]
  36. Schlech W. F., Lavigne P. M., Bortolussi R. A.. 8 other authors 1983; Epidemic listeriosis: evidence for transmission by food. N Engl J Med308:203–206[CrossRef]
    [Google Scholar]
  37. Schwartz B., Hexter D., Broome C. V.. 7 other authors 1989; Investigation of an outbreak of listeriosis: new hypotheses for the aetiology of epidemic Listeria monocytogenes infections. J InfectDis159:680–685[CrossRef]
    [Google Scholar]
  38. Selander R. K., Musser J. M. 1990; Population genetics of bacterial pathogenesis. In Molecular Basis of Bacterial Pathogenesis pp11–36 Edited by Iglewski B. H., Clark V. L.. San Diego, CA: Academic Press;
    [Google Scholar]
  39. Selander R. K., Musser J. M., Caugant D. A., Gilmour M. N., Whittam T. S. 1987; Population genetics of pathogenic bacteria. Microb Pathog3:1–7[CrossRef]
    [Google Scholar]
  40. Swaminathan B., Hunter S. B., Desmarchelier P. M. 10 other authors 1996; WHO-sponsored international collaborative study to evaluate methods for subtyping Listeria monocytogenes : restriction fragment length polymorphism (RFLP) analysis using ribotyping and Southern blotting with two probes derived from L. monocytogenes chromosome. Int J Food Microbiol32:263–278[CrossRef]
    [Google Scholar]
  41. Vines A., Reeves M. W., Hunter S., Swaminathan B. 1992; Restriction fragment length polymorphism in four virulence-associated genes of Listeria monocytogenes . Res Microbiol143:281–294[CrossRef]
    [Google Scholar]
  42. Wiedmann M., Bruce J. L., Keating C., Johnson A., McDonough P. L., Batt C. A. 1997; Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect Immun65:2707–2716
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-5-1095
Loading
/content/journal/micro/10.1099/00221287-147-5-1095
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error