Endotoxic properties of lipid A from Free

Abstract

The lipid A from has been isolated and its complete chemical structure determined [Iida, T., Haishima, Y., Tanaka, A., Nishijima, K., Saito, S. & Tanamoto, K. (1996). 237, 468–475]. In this work, the relationship between its chemical structure and biological activity was studied. The lipid A was highly homogeneous chemically and was characterized by the relatively short chain length (C) of the 3-hydroxy fatty acid components directly bound to the glucosamine disaccharide backbone by either amide or ester linkages. The lipid A exhibited endotoxic activity in all of the assay systems tested (mitogenicity in mouse spleen cells; induction of tumour necrosis factor alpha release from both mouse peritoneal macrophages and mouse macrophage-like cell line J774-1, as well as from the human monocytic cell line THP-1; induction of nitric oxide release from J774-1 cells; gelation activity and lethal toxicity in galactosamine-sensitized mice) to the same extent as did ‘’ lipid A or LPS used as controls. The strong endotoxic activity of the lipid A indicates that the composition of 3-hydroxydecanoic acid is not responsible for the low endotoxicity of the lipid A observed in members of the genus, as has previously been suggested. Furthermore, both the lack of a second acylation of the 3-hydroxy fatty acid attached at the 3′ position, and the substitution of the hydroxyl group of the 3-hydroxy fatty acid attached at position 2, do not affect the manifestation of endotoxic activity or species specificity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-5-1087
2001-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/5/1471087a.html?itemId=/content/journal/micro/10.1099/00221287-147-5-1087&mimeType=html&fmt=ahah

References

  1. Galanos C., Westphal O, Lüderitz O. 1969; A new method for the extraction of R lipopolysaccharides. Eur J Biochem 9:245–247 [CrossRef]
    [Google Scholar]
  2. Galanos C., Westphal O, Lüderitz O. 1971; Preparations and properties of antisera against the lipid A component of bacterial lipopolysaccharides. Eur J Biochem 24:116–122 [CrossRef]
    [Google Scholar]
  3. Galanos C., Freudenberg M. A., Reutter W. 1979; Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci U S A 76:5939–5943 [CrossRef]
    [Google Scholar]
  4. Galanos C., Freudenberg M., Brade L., Schade U., Rietschel E. Th., Kusumoto S., Shiba T, Lüderiz O. 1986; Biological activity of synthetic heptaacyl lipid A representing a component of Salmonella minnesota R595 lipid A. Eur J Biochem 160:55–59 [CrossRef]
    [Google Scholar]
  5. Golenbock D. T., Hampton R. Y., Qureshi N., Takayama K., Raetz C. R. H. 1991; Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J Biol Chem 266:19490–19498
    [Google Scholar]
  6. Green L. C., Wanger D. A., Glogowsky J., Sipper P. L., Wishnok J. S., Tannenbaum S. R. 1982; Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138 [CrossRef]
    [Google Scholar]
  7. Homma J. Y., Matsuura M., Kanegasaki S. 11 other authors 1985; Structural requirements of lipid A responsible for the functions: a study with chemically synthesized lipid A and its analogues. J Biochem 98:395–406
    [Google Scholar]
  8. Iida T., Haishima Y., Tanaka A., Tanamoto K. 1996; Chemical structure of lipid A isolated from Comamonas testosteroni lipopolysaccharide. Eur J Biochem 237:468–475 [CrossRef]
    [Google Scholar]
  9. Kanegasaki S., Tanamoto K., Yasuda T. 10 other authors 1986; Structure-activity relationship of lipid A: comparison of biological activities of natural and synthetic lipid A’s with different fatty acid compositions. J Biochem 99:1203–1210
    [Google Scholar]
  10. Kitchens R. L., Ulevitch T. R. J., Munford R. S. 1992; Lipopolysaccharide (LPS) partial structures inhibit responses to LPS in a human macrophage cell line without inhibiting LPS uptake by a CD14-mediated pathway. J Exp Med 176:485–494 [CrossRef]
    [Google Scholar]
  11. Kotani S., Takada H., Takahashi I. 7 other authors 1986; Low endotoxic activities of synthetic Salmonella -type lipid A with an additional acyloxyacyl group on the 2-amino group of beta (1–6) glucosamine disaccharide 1–4′-bisphosphate. Infect Immun 52:872–884
    [Google Scholar]
  12. Kulshin V. A., Zaringer U., Lindner B., Lager K., Dmitriev B. A., Rietschel E. Th. 1991; Structural characterization of the lipid A component of Pseudomonas aeruginosa wild-type and rough mutant lipopolysaccharides. Eur J Biochem 198:697–704 [CrossRef]
    [Google Scholar]
  13. Lüderitz O. Freudenberg M., Galanos C., Lehmann V., Rietschel E. Th., Shaw D. H. 1982; Lipopolysaccharides of gram-negative bacteria. Curr Top Membr Transp 17:79–151
    [Google Scholar]
  14. Mayer H., Weckesser J. 1984; ‘Unusual’ lipid A’s: structures, taxonomical relevance and potential value for endotoxin research. In Handbook of Endotoxins pp 221–241 Edited by Rietschel E. Th. Amsterdam/New York/Oxford: Elsevier;
    [Google Scholar]
  15. Ogawa T. 1994; Immunobiological properties of chemically defined lipid A from lipopolysaccharide of Porphyromonas ( Bacteroides ) gingivalis . Eur J Biochem 219:737–742 [CrossRef]
    [Google Scholar]
  16. Omar A. S., Flammann H. T., Borowiak D., Weckesser J. 1983; Lipopolysaccharide of two strains of the phototrophic bacterium Rhodopseudomonas capsulata. Arch Microbiol 134:212–216 [CrossRef]
    [Google Scholar]
  17. Qureshi N., Honovich J. P., Hara H., Cotter R. J., Takayama K. 1991; Diphosphoryl lipid A obtained from the nontoxic lipopolysaccharide of Rhodopseudomonas sphaeroides is an endotoxin antagonist in mice. Infect Immun 59:441–444
    [Google Scholar]
  18. Strittmatter W., Weckesser W., Salimath P. V., Galanos C. 1983; Nontoxic lipopolysaccharide from Rhodopseudomonas sphaeroides ATCC 17023. J Bacteriol 155:153–158
    [Google Scholar]
  19. Tanamoto K. 1994; Induction of prostaglandin release from macrophages by bacterial endotoxin. Methods Enzymol 236:31–41
    [Google Scholar]
  20. Tanamoto K. 1995; Dissociation of endotoxic activities in a chemically synthesized lipid A precursor after acetylation. Infect Immun 63:690–692
    [Google Scholar]
  21. Tanamoto K. 1998; Production of nontoxic lipid A by chemical modification and its antagonistic effect on LPS action. Prog Clin Biol Res 397:269–280
    [Google Scholar]
  22. Tanamoto K. 1999; Induction of lethal shock and tolerance by Porphyromonas gingivalis lipopolysaccharide in d-galactosamine-sensitized C3H/HeJ mice. Infect Immun 67:3399–3402
    [Google Scholar]
  23. Tanamoto K., Azumi S. 2000; Salmonella -type heptaacylated lipid A is inactive and acts as an antagonist of LPS action on human line cells. J Immunol 164:3149–3156 [CrossRef]
    [Google Scholar]
  24. Tanamoto K., Galanos C., Kusumoto S., Shiba T, Lüderitz O. 1984; Mitogenic activities of chemically synthesized lipid A analogues and suppression of mitogenicity of lipid A. Infect Immun 44:427–433
    [Google Scholar]
  25. Tanamoto K., Azumi S., Haishima Y., Kumada H., Umemoto T. 1997a; The lipid A moiety of Porphyromonas gingivalis LPS specifically mediates the activation of C3H/HeJ mice. J Immunol 158:4430–4436
    [Google Scholar]
  26. Tanamoto K., Azumi S., Haishima Y., Kumada H., Umemoto T. 1997b; Endotoxic properties of free lipid A from Porphyromonas gingivalis . Microbiology 143:63–71 [CrossRef]
    [Google Scholar]
  27. Tharanathan R. N., Weckesser J., Strittmatter W., Mayer H. 1983; Structural studies on the d-arabinose containing lipid A from Rhodospirillum tenue 2761. Eur J Biochem 136:175–180 [CrossRef]
    [Google Scholar]
  28. Troelstra A., Antal-Szalmas P., Weersink A. J. L., Verhoef J., Van Kessel K. P. M., Van Strijp J. A. G, de Graff-Miltenburg L. A. M. 1997; Saturable CD14-dependent binding of fluorescein-labeled lipopolysaccharide to human monocytes. Infect Immun 65:2272–2277
    [Google Scholar]
  29. Westphal O., Jann K. 1965; Bacterial lipopolysaccharides. Extraction with phenol-water and further applications of the procedure. Methods Carbohydr Chem 5:83–91
    [Google Scholar]
  30. Westphal O., Bister F, Lüderitz O. 1952; Über die Extraktion von Bakterien mit Phenol/Wasser. Z Naturforsch 76:148–155
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-5-1087
Loading
/content/journal/micro/10.1099/00221287-147-5-1087
Loading

Data & Media loading...

Most cited Most Cited RSS feed