1887

Abstract

The promoter region consists of two divergent promoters, directing expression of the major chemotaxis operon and a novel gene (hemotaxis ssociated ene ). Analyses of start sites by primer extension and alignment of the divergent promoters revealed significant similarities between them at the −35 promoter region. Both and are differentially expressed in the cell cycle, with maximal activation of transcription in predivisional cells. The main difference between the and promoters is that, in common with the flagellin, is expressed in swarmer cells. A promoter fusion that contains 36 bases of untranslated mRNA has sufficient information to segregate the transcript to swarmer cells. Expression of and was dependent on DNA replication. Transcriptional epistasis experiments were performed to identify potential regulators in the flagellar hierarchy. The sigma factor RpoN, which is required for flagellar biogenesis, is not required for and expression. Mutations in the genes for the MS-ring and the switch complex (flagellar class II mutants) do not affect expression of and . However, CtrA, an essential response regulator of flagellar gene transcription, is required.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-949
2001-04-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1470949a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-949&mimeType=html&fmt=ahah

References

  1. Alley M. R. K., Gomes S. L., Alexander W., Shapiro L. 1991; Genetic analysis of a temporally transcribed chemotaxis gene cluster in Caulobacter crescentus . Genetics 129:333–341
    [Google Scholar]
  2. Alley M. R. K., Maddock J. R., Shapiro L. 1992; Polar localization of a bacterial chemoreceptor Genes Dev. 6825–836 [CrossRef]
  3. Anderson D. K., Newton A. 1997; Posttranscriptional regulation of Caulobacter flagellin genes by a late flagellum assembly checkpoint. J Bacteriol 179:2281–2288
    [Google Scholar]
  4. Anderson P. E., Gober J. W. 2000; FlbT, the post-transcriptional regulator of flagellin synthesis in Caulobacter crescentus , interacts with the 5′ untranslated region of flagellin mRNA. Mol Microbiol 38:41–52 [CrossRef]
    [Google Scholar]
  5. Brassinga A. K., Gorbatyuk B., Ouimet M. C., Marczynski G. T. 2000; Selective cell cycle transcription requires membrane synthesis in Caulobacter . EMBO J 19:702–709 [CrossRef]
    [Google Scholar]
  6. Brun Y. V., Shapiro L. 1992; A temporally controlled sigma-factor is required for polar morphogenesis and normal cell division in Caulobacter . Genes Dev 6:2395–2408 [CrossRef]
    [Google Scholar]
  7. Dingwall A., Garman J. D., Shapiro L. 1992a; Organization and ordered expression of Caulobacter genes encoding flagellar basal body rod and ring proteins. J Mol Biol 228:1147–1162 [CrossRef]
    [Google Scholar]
  8. Dingwall A., Zhuang W. Y., Quon K., Shapiro L. 1992b; Expression of an early gene in the flagellar regulatory hierarchy is sensitive to an interruption in DNA replication. J Bacteriol 174:1760–1768
    [Google Scholar]
  9. Domian I. J., Quon K. C., Shapiro L. 1997; Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell 90:415–424 [CrossRef]
    [Google Scholar]
  10. Ely B. 1991; Genetics of Caulobacter crescentus . Methods Enzymol 204:372–384
    [Google Scholar]
  11. Ely B., Ely T. W. 1989; Use of pulsed field gel electrophoresis and transposon mutagenesis to estimate the minimal number of genes required for motility in Caulobacter crescentus . Genetics 123:649–654
    [Google Scholar]
  12. Ely B., Gerardot C. J., Fleming D. L., Gomes S. L., Frederikse P., Shapiro L. 1986; General nonchemotactic mutants of Caulobacter crescentus . Genetics 114:717–730
    [Google Scholar]
  13. Ely B., Ely T. W., Minnich S. A, Crymes W. B. Jr 2000; A family of six flagellin genes contributes to the Caulobacter crescentus flagellar filament. J Bacteriol 182:5001–5004 [CrossRef]
    [Google Scholar]
  14. Gober J. W., Shapiro L. 1992; A developmentally regulated Caulobacter flagellar promoter is activated by 3′ enhancer and IHF binding elements. Mol Biol Cell 3:913–926 [CrossRef]
    [Google Scholar]
  15. Helmann J. D., Chamberlin M. J. 1988; Structure and function of bacterial sigma factors. Annu Rev Biochem 57:839–872 [CrossRef]
    [Google Scholar]
  16. Laub M. T., McAdams H. H., Feldblyum T., Fraser C. M., Shapiro L. 2000; Global analysis of the genetic network controlling a bacterial cell cycle. Science 290:2144–2148 [CrossRef]
    [Google Scholar]
  17. Leclerc G., Wang S. P., Ely B. 1998; A new class of Caulobacter crescentus flagellar genes. J Bacteriol 180:5010–5019
    [Google Scholar]
  18. Loewy Z. G., Bryan R. A., Reuter S. H., Shapiro L. 1987; Control of synthesis and positioning of a Caulobacter crescentus flagellar protein. Genes Dev 1:626–635 [CrossRef]
    [Google Scholar]
  19. Malakooti J., Wang S. P., Ely B. 1995; A consensus promoter sequence for Caulobacter crescentus genes involved in biosynthetic and housekeeping functions. J Bacteriol 177:4372–4376
    [Google Scholar]
  20. Mangan E. K., Malakooti J., Caballero A., Anderson P., Ely B., Gober J. W. 1999; FlbT couples flagellum assembly to gene expression in Caulobacter crescentus . J Bacteriol 181:6160–6170
    [Google Scholar]
  21. Marczynski G. T., Lentine K., Shapiro L. 1995; A developmentally regulated chromosomal origin of replication uses essential transcription elements. Genes Dev 9:1543–1557 [CrossRef]
    [Google Scholar]
  22. Milhausen M., Agabian N. 1983; Caulobacter flagellin mRNA segregates asymmetrically at cell division. Nature 302:630–632 [CrossRef]
    [Google Scholar]
  23. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Mohr C. D., MacKichan J. K., Shapiro L. 1998; A membrane-associated protein, FliX, is required for an early step in Caulobacter flagellar assembly. J Bacteriol 180:2175–2185
    [Google Scholar]
  25. Mullin D. A., Newton A. 1993; A sigma 54 promoter and downstream sequence elements ftr2 and ftr3 are required for regulated expression of divergent transcription units flaN and flbG in Caulobacter crescentus . J Bacteriol 175:2067–2076
    [Google Scholar]
  26. Newton A., Ohta N., Ramakrishnan G., Mullin D., Raymond G. 1989; Genetic switching in the flagellar gene hierarchy of Caulobacter requires negative as well as positive regulation of transcription. Proc Natl Acad Sci USA 86:6651–6655 [CrossRef]
    [Google Scholar]
  27. Nierman W. C., Feldblyum T. V., Paulsen I. T. 34 other authors 2001; Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci USA in press
    [Google Scholar]
  28. Ninfa A. J., Mullin D. A., Ramakrishnan G., Newton A. 1989; Escherichia coli sigma 54 RNA polymerase recognizes Caulobacter crescentus flbG and flaN flagellar gene promoters in vitro . J Bacteriol 171:383–391
    [Google Scholar]
  29. Ohta N., Swanson E., Ely B., Newton A. 1984; Physical mapping and complementation analysis of transposon Tn 5 mutations in Caulobacter crescentus : organization of transcriptional units in the hook gene cluster. J Bacteriol 158:897–904
    [Google Scholar]
  30. Osley M. A., Newton A. 1980; Temporal control of the cell cycle in Caulobacter crescentus : roles of DNA chain elongation and completion. J Mol Biol 138:109–128 [CrossRef]
    [Google Scholar]
  31. Osley M. A., Sheffery M., Newton A. 1977; Regulation of flagellin synthesis in the cell cycle of Caulobacter : dependence on DNA replication. Cell 12:393–400 [CrossRef]
    [Google Scholar]
  32. Quon K. C., Marczynski G. T., Shapiro L. 1996; Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84:83–93 [CrossRef]
    [Google Scholar]
  33. Ramakrishnan G., Newton A. 1990; FlbD of Caulobacter crescentus is a homologue of the NtrC (NRI) protein and activates sigma 54-dependent flagellar gene promoters. Proc Natl Acad Sci USA 87:2369–2373 [CrossRef]
    [Google Scholar]
  34. Ramakrishnan G., Zhao J. L., Newton A. 1991; The cell cycle-regulated flagellar gene flbF of Caulobacter crescentus is homologous to a virulence locus ( lcrD ) of Yersinia pestis . J Bacteriol 173:7283–7292
    [Google Scholar]
  35. Reisenauer A., Quon K., Shapiro L. 1999; The CtrA response regulator mediates temporal control of gene expression during the Caulobacter cell cycle. J Bacteriol 181:2430–2439
    [Google Scholar]
  36. Salser W., Gesteland R. F., Bolle A. 1967; In vitro synthesis of bacteriophage lysozyme. Nature 215:588–591 [CrossRef]
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Sanders L. A., Van Way S., Mullin D. A. 1992; Characterization of the Caulobacter crescentus flbF promoter and identification of the inferred FlbF product as a homolog of the LcrD protein from a Yersinia enterocolitica virulence plasmid. J Bacteriol 174:857–866
    [Google Scholar]
  39. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology 1:784–791 [CrossRef]
    [Google Scholar]
  40. Stephens C. M., Shapiro L. 1993; An unusual promoter controls cell-cycle regulation and dependence on DNA replication of the Caulobacter fliLM early flagellar operon. Mol Microbiol 9:1169–1179 [CrossRef]
    [Google Scholar]
  41. Tsai J. W., Alley M. R. K. 2000; Proteolysis of the McpA chemoreceptor does not require the Caulobacter major chemotaxis operon. J Bacteriol 182:504–507 [CrossRef]
    [Google Scholar]
  42. Van Way S. M., Newton A., Mullin A. H., Mullin D. A. 1993; Identification of the promoter and a negative regulatory element, ftr4, that is needed for cell cycle timing of fliF operon expression in Caulobacter crescentus . J Bacteriol 175:367–376
    [Google Scholar]
  43. Wingrove J. A., Gober J. W. 1996; Identification of an asymmetrically localized sensor histidine kinase responsible for temporally and spatially regulated transcription. Science 274:597–601 [CrossRef]
    [Google Scholar]
  44. Wu J., Newton A. 1997; Regulation of the Caulobacter flagellar gene hierarchy; not just for motility. Mol Microbiol 24:233–239 [CrossRef]
    [Google Scholar]
  45. Wu J., Ohta N., Newton A. 1998; An essential, multicomponent signal transduction pathway required for cell cycle regulation in Caulobacter . Proc Natl Acad Sci USA 95:1443–1448 [CrossRef]
    [Google Scholar]
  46. Xu H., Dingwall A., Shapiro L. 1989; Negative transcriptional regulation in the Caulobacter flagellar hierarchy. Proc Natl Acad Sci USA 86:6656–6660 [CrossRef]
    [Google Scholar]
  47. Yu J., Shapiro L. 1992; Early Caulobacter crescentus genes fliL and fliM are required for flagellar gene expression and normal cell division. J Bacteriol 174:3327–3338
    [Google Scholar]
  48. Zhuang W.-Y., Shapiro L. 1995; Caulobacter FliQ and FliR membrane proteins, required for flagellar biogenesis and cell division, belong to a family of virulence factor export proteins. J Bacteriol 177:343–356
    [Google Scholar]
/content/journal/micro/10.1099/00221287-147-4-949
Loading
/content/journal/micro/10.1099/00221287-147-4-949
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error