The role and relevance of phospholipase D1 during growth and dimorphism of Free

Abstract

The phosphatidylcholine-specific phospholipase D1 (PLD1) in is involved in vesicle transport and is essential for sporulation. The gene encoding the homologous phospholipase D1 from () was used to study the role of PLD1 in this pathogenic fungus. and expression studies using Northern blots and reverse transcriptase-PCR showed low mRNA levels in defined media supporting yeast growth and during experimental infection, while enhanced levels of transcripts were detected during the yeast to hyphal transition. To study the relevance of during yeast and hyphal growth, an essential part of the gene was deleted in both alleles of two isogenic strains. PLD1 activity assays showed that mutants produced no detectable levels of phosphatidic acid, the hydrolytic product of PLD1 activity, and strongly reduced levels of diacylglycerol, the product of lipid phosphate phosphohydrolase, suggesting no or a negligible background PLD1 activity in the mutants. The mutants showed no growth differences compared to the parental wild-type in liquid complex and minimal media, independent of the growth temperature. In addition, growth rates of mutants in media with protein as the sole source of nitrogen were similar to growth rates of the wild-type, indicating that secretion of proteinases was not reduced. Chlamydospore formation was normal in mutants. When germ tube formation was induced in liquid media, mutants showed similar rates of yeast to hyphal transition compared to the wild-type. However, no hyphae formation was observed on solid Spider medium, and cell growth on cornmeal/Tween 80 medium indicated aberrant morphogenesis. In addition, mutants growing on solid media had an attenuated ability to invade the agar. In a model of oral candidosis, mutants showed no attenuation of virulence. In contrast, the mutant was less virulent in two different mouse models. These data suggest that is not essential for growth and oral infections. However, they also suggest that a prominent part of the phosphatidic acid and diacylglycerol pools is produced by PLD1 and that the level of these components is important for morphological transitions under certain conditions in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-879
2001-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1470879a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-879&mimeType=html&fmt=ahah

References

  1. Athenstaedt K., Daum G. 1997; Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae . J Bacteriol 179:7611–7616
    [Google Scholar]
  2. Bennett D. E., McCreary C. E., Coleman D. C. 1998; Genetic characterization of a phospholipase C gene from Candida albicans : presence of homologous sequences in Candida species other than Candida albicans . Microbiology 144:55–72 [CrossRef]
    [Google Scholar]
  3. Braun B. R., Johnson A. D. 1997; Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109 [CrossRef]
    [Google Scholar]
  4. Brown A. J., Gow N. A. 1999; Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7:333–338 [CrossRef]
    [Google Scholar]
  5. Buckley H. R., Price M. R., Daneo-Moore L. 1982; Isolation of a variant of Candida albicans . Infect Immun 37:1209–1217
    [Google Scholar]
  6. Buffo J., Herman M. A., Soll D. R. 1984; A characterization of pH-regulated dimorphism in Candida albicans . Mycopathologia 85:21–30 [CrossRef]
    [Google Scholar]
  7. Colthurst D. R., Schauder B. S., Hayes M. V., Tuite M. F. 1992; Elongation factor 3 (EF-3) from Candida albicans shows both structural and functional similarity to EF-3 from Saccharomyces cerevisiae . Mol Microbiol 6:1025–1033 [CrossRef]
    [Google Scholar]
  8. Cook J. G., Bardwell L., Kron S. J., Thorner J. 1996; Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae . Genes Dev 10:2831–2848 [CrossRef]
    [Google Scholar]
  9. Ella K. M., Dolan J. W., Meier K. E. 1995; Characterization of a regulated form of phospholipase D in the yeast Saccharomyces cerevisiae . Biochem J 307:799–805
    [Google Scholar]
  10. Ella K. M., Dolan J. W., Qi C., Meier K. E. 1996; Characterization of Saccharomyces cerevisiae deficient in expression of phospholipase D. Biochem J 314:15–19
    [Google Scholar]
  11. Ernst J. 2000; Dimorphism in Candida albicans . In Contributions to Microbiology: Dimorphism in Human Pathogenic and Apathogenic Yeasts pp 98–111 Edited by Ernst J. F., Schmidt A. Basel: Karger;
    [Google Scholar]
  12. Feng Q., Summers E., Guo B., Fink G. 1999; Ras signaling is required for serum-induced hyphal differentiation in Candida albicans . J Bacteriol 181:6339–6346
    [Google Scholar]
  13. Fodstad Ø., Hansen C. T., Cannon G. B., Boyd M. R. 1984; Immune characteristics of the beige-nude mouse: a model for studying immune surveillance. Scand J Immunol 20:267–272 [CrossRef]
    [Google Scholar]
  14. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics 134:717–728
    [Google Scholar]
  15. Gadd G. M. 1995; Signal transduction in fungi. In The Growing Fungus Edited by Gow N. A. R., Gadd G. M. London: Chapman & Hall;
    [Google Scholar]
  16. Gadd G. M., Foster S. A. 1997; Metabolism of inositol 1,4,5-trisphosphate in Candida albicans : significance as a precursor of inositol polyphosphates and in signal transduction during the dimorphic transition from yeast cells to germ tubes. Microbiology 143:437–448 [CrossRef]
    [Google Scholar]
  17. Gaits F., Fourcade O., Le Balle F. 8 other authors 1997; Lysophosphatidic acid as a phospholipid mediator: pathways of synthesis. FEBS Lett 410:54–58 [CrossRef]
    [Google Scholar]
  18. Gillum A. M., Tsay E. Y. H., Kirsch D. R. 1984; Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198:179–182 [CrossRef]
    [Google Scholar]
  19. Gow N. A., Gooday G. W. 1982; Vacuolation, branch production and linear growth of germ tubes in Candida albicans . J Gen Microbiol 128:2195–2198
    [Google Scholar]
  20. Gow N. A. R., Robbins P. W., Brown A. J. P., Fonzi W. A., Chapman T., Kinsman O. K. 1994; A hyphal-specific chitin synthase gene ( CHS2 ) is not essential for growth, dimorphism or virulence of Candida albicans . Proc Natl Acad Sci USA 91:6216–6220 [CrossRef]
    [Google Scholar]
  21. Goyal S., Khuller G. K. 1992; Phospholipid composition and subcellular distribution in yeast and mycelial forms of Candida albicans . J Med Vet Mycol 30:355–362 [CrossRef]
    [Google Scholar]
  22. Hashida-Okado T., Ogawa A., Endo M., Yasumoto R., Takesako K., Kato I. 1996; AUR1 , a novel gene conferring aureobasidin resistance on Saccharomyces cerevisiae : a study of defective morphologies in Aur1p-depleted cells. Mol Gen Genet 251:236–244
    [Google Scholar]
  23. Hube B., Monod M., Schofield D. A., Brown A. J. P., Gow N. A. R. 1994; Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans . Mol Microbiol 14:87–99 [CrossRef]
    [Google Scholar]
  24. Hube B., Sanglard D., Odds F. C., Hess D., Monod M., Schafer W., Brown A. J., Gow N. A. 1997; Disruption of each of the secreted aspartyl proteinase genes SAP1 , SAP2 , and SAP3 of Candida albicans attenuates virulence. Infect Immun 65:3529–3538
    [Google Scholar]
  25. Hube B., Stehr F., Bossenz M., Mazur A., Kretschmar M., Schäfer W. 2000; Secreted lipases of Candida albicans : cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch Microbiol 174:362–367 [CrossRef]
    [Google Scholar]
  26. Hull C. M., Raisner R. M., Johnson A. D. 2000; Evidence for mating of the ‘asexual’ yeast Candida albicans in a mammalian host. Science 289:307–310 [CrossRef]
    [Google Scholar]
  27. Kanoh H., Nakashima S., Zhao Y., Sugiyama Y., Kitajima Y., Nozawa Y. 1998; Molecular cloning of a gene encoding phospholipase D from the pathogenic and dimorphic fungus Candida albicans . Biochim Biophys Acta 1398:359–364 [CrossRef]
    [Google Scholar]
  28. Kearns B. G., McGee T. P., Mayinger P., Gedvilaite A., Phillips S. E., Kagiwada S., Bankaitis V. A. 1997; Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 387:101–105 [CrossRef]
    [Google Scholar]
  29. Lemmon M. A., Ferguson K. M., Schlessinger J. 1996; PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell 85:621–624 [CrossRef]
    [Google Scholar]
  30. Li X., Routt S. M., Xie Z., Cui X., Fang M., Kearns M. A., Bard M., Kirsch D. R., Bankaitis V. A. 2000; Identification of a novel family of nonclassic yeast phosphatidylinositol transfer proteins whose function modulates phospholipase D activity and Sec14p-independent cell growth. Mol Biol Cell 11:1989–2005 [CrossRef]
    [Google Scholar]
  31. Liu H., Kohler J., Fink G. R. 1994; Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266:1723–1726 [CrossRef]
    [Google Scholar]
  32. Lopez M. C., Nicaud J. M., Skinner H. B., Vergnolle C., Kader J. C., Bankaitis V. A., Gaillardin C. 1994; A phosphatidylinositol/phosphatidylcholine transfer protein is required for differentiation of the dimorphic yeast Yarrowia lipolytica from the yeast to the mycelial form. J Cell Biol 125:113–127 [CrossRef]
    [Google Scholar]
  33. McLain N., Dolan J. W. 1997; Phospholipase D activity is required for dimorphic transition in Candida albicans . Microbiology 143:3521–3526 [CrossRef]
    [Google Scholar]
  34. Magee B. B., Magee P. T. 2000; Induction of mating in Candida albicans by construction of MTLa and MTLα strains. Science 289:310–313 [CrossRef]
    [Google Scholar]
  35. Magee P., Scherer S. 1998; Genome mapping and gene discovery in Candida albicans . ASM News 64:505–511
    [Google Scholar]
  36. Mago N., Khuller G. K. 1990; Subcellular localization of enzymes of phospholipid metabolism in Candida albicans . J Med Vet Mycol 28:355–362 [CrossRef]
    [Google Scholar]
  37. Maneu V., Cervera A. M., Martinez J. P., Gozalbo D. 1996; Molecular cloning and characterization of a Candida albicans gene (EFB1 ) coding for the elongation factor EF-1β. FEMS Microbiol Lett 145:157–162
    [Google Scholar]
  38. Mattia E., Carruba G., Angiolella L., Cassone A. 1982; Induction of germ tube formation by N -acetyl-d-glucosamine in Candida albicans : uptake of inducer and germinative response. J Bacteriol 152:555–562
    [Google Scholar]
  39. Mayr J. A., Kohlwein S. D., Paltauf F. 1996; Identification of a novel, Ca(2+)-dependent phospholipase D with preference for phosphatidylserine and phosphatidylethanolamine in Saccharomyces cerevisiae . FEBS Lett 393:236–240 [CrossRef]
    [Google Scholar]
  40. Monteoliva L., Sanchez M., Pla J., Gil C., Nombela C. 1996; Cloning of Candida albicans sec14 gene homologue coding for a putative essential function. Yeast 12:1097–1105 [CrossRef]
    [Google Scholar]
  41. Moolennaar W. H. 1995; Lysophosphatidic acid, a multifunctional phospholipid messenger. J Biol Chem 270:12949–12952 [CrossRef]
    [Google Scholar]
  42. Morris A. J., Frohman M. A., Engebrecht J. 1997; Measurement of phospholipase D activity. Anal Biochem 252:1–9 [CrossRef]
    [Google Scholar]
  43. Riggle P. J., Slobodkin I. V., Hanson M. P., Volkert T. L., Kumamoto C. A, Brown D. H. Jr 1997; Two transcripts, differing at their 3′ ends, are produced from the Candida albicans SEC14 gene. Microbiology 143:3527–3535 [CrossRef]
    [Google Scholar]
  44. Roberts R. L., Fink G. R. 1994; Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8:2974–2985 [CrossRef]
    [Google Scholar]
  45. Rose K., Rudge S. A., Frohman M. A., Morris A. J., Engebrecht J. 1995; Phospholipase D signaling is essential for meiosis. Proc Natl Acad Sci USA 92:12151–12155 [CrossRef]
    [Google Scholar]
  46. Rudge S. A., Morris A. J., Engebrecht J. 1998; Relocalization of phospholipase D activity mediates membrane formation during meiosis. J Cell Biol 140:81–90 [CrossRef]
    [Google Scholar]
  47. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  48. Schaller M., Korting H. C., Hube B, Schäfer W. 1998; Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Mol Microbiol 29:605–615 [CrossRef]
    [Google Scholar]
  49. Schmidt A., Wolde M., Thiele C., Fest W., Kratzin H., Podtelejnikov A. V., Witke W., Huttner W. B., Soling H. D. 1999; Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401:133–141 [CrossRef]
    [Google Scholar]
  50. Sreenivas A., Patton-Vogt J. L., Bruno V., Griac P., Henry S. A. 1998; A role for phospholipase D (Pld1p) in growth, secretion, and regulation of membrane lipid synthesis in yeast. J Biol Chem 273:16635–16638 [CrossRef]
    [Google Scholar]
  51. Stoldt V. R., Sonneborn A., Leuker C. E., Ernst J. F. 1997; Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans , is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1991 [CrossRef]
    [Google Scholar]
  52. Tall E., Dorman G., Garcia P. 8 other authors 1997; Phosphoinositide binding specificity among phospholipase C isozymes as determined by photo-cross-linking to novel substrate and product analogs. Biochemistry 36:7239–7248 [CrossRef]
    [Google Scholar]
  53. Vasquez-Torres A., Jones-Carson J., Wagner R. D., Warner T., Balish E. 1999; Early resistance of interleukin-10 knockout mice to acute systemic candidiasis. Infect Immun 67:670–674
    [Google Scholar]
  54. Waksman M., Eli Y., Liscovitch M., Gerst J. E. 1996; Identification and characterization of a gene encoding phospholipase D activity in yeast. J Biol Chem 271:2361–2364 [CrossRef]
    [Google Scholar]
  55. Waksman M., Tang X., Eli Y., Gerst J. E., Liscovitch M. 1997; Identification of a novel Ca2+-dependent, phosphatidylethanolamine-hydrolyzing phospholipase D in yeast bearing a disruption in PLD1 . J Biol Chem 272:36–39 [CrossRef]
    [Google Scholar]
  56. Wang B., Biron C., She J., Higgins K., Sunshine M. J., Lacy E., Lonberg N., Terhorst C. 1994; A block in both early T lymphocyte and natural killer cell development in transgenic mice with high-copy numbers of the human CD3E gene. Proc Natl Acad Sci USA 91:9402–9406 [CrossRef]
    [Google Scholar]
  57. Xie Z., Fang M., Rivas M. P., Faulkner A. J, Sternweis P. C., Engebrecht J. A., Bankaitis V. A. 1998; Phospholipase D activity is required for suppression of yeast phosphatidylinositol transfer protein defects. Proc Natl Acad Sci USA 95:12346–12351 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-4-879
Loading
/content/journal/micro/10.1099/00221287-147-4-879
Loading

Data & Media loading...

Most cited Most Cited RSS feed