1887

Abstract

Antigenic variation of gonococcal pilin involves a family of variable genes that undergo homologous recombination, resulting in transfer of variant sequences from the silent gene copies into the complete expression locus. Little is known about the specific recombination events that are involved in assembling new variant pilin genes . One approach to understanding pilin variation is to carry out experimental human infections with a gonococcal strain having a fully characterized repertoire of pilin genes, so that the specific recombination events occurring can be determined. To this end, the authors cloned, sequenced and mapped the pilin genes of strain FA1090 of . This strain contains one locus and 19 silent gene copies that are arranged in five loci; the locus and four of the loci are clustered in a 35 kb region of the chromosome. The general features of the pilin loci in FA1090 are similar to those in strain MS11, in which the mechanism of pilin variation has been extensively studied. However, none of the silent copy sequences are identical in the two strains, which emphasizes the extreme variability in this gene family among gonococci. Three male volunteers were inoculated with the same variant of strain FA1090 and developed urethritis within 2–4 d. The gene sequences from a total of 23 colonies cultured from the subjects were analysed, determining which silent copy donated each portion of the expressed genes. There were 12 different pilin variants, one of which was the original inoculum variant, among the -expressed gene sequences. The of the inoculum variant was derived entirely from a single silent copy (c1). However, the genes in the majority of the colonies cultured from the infected subjects were chimeras of sequence derived from two or three silent copies. Recombination to generate new sequences involved exchange of single variable minicassettes, multiple minicassettes, entire silent gene copies, or (rarely) recombination within a minicassette.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-839
2001-04-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1470839a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-839&mimeType=html&fmt=ahah

References

  1. Bihlmaier, A., Romling, U., Meyer, T. F., Tummler, B. & Gibbs, C. P. ( 1991; ). Physical and genetic map of the Neisseria gonorrhoeae strain MS11-N198 chromosome. Mol Microbiol 5, 2529-2539.[CrossRef]
    [Google Scholar]
  2. Black, W. J., Schwalbe, R. S., Nachamkin, I. & Cannon, J. G. ( 1984; ). Characterization of Neisseria gonorrhoeae protein II phase variation by use of monoclonal antibodies. Infect Immun 45, 453-457.
    [Google Scholar]
  3. Boslego, J. W., Tramont, E. C., Chung, R. C. & 8 other authors ( 1991; ). Efficacy trial of a parenteral gonococcal pilus vaccine in men. Vaccine 9, 154–162.[CrossRef]
    [Google Scholar]
  4. Brinton, C. C., Wood, S. W., Brown, A. & 7 other authors (1982). The development of a neisserial pilus vaccine for gonorrhea and meningococcal meningitis. In Seminars in Infectious Disease, pp. 140–159. Edited by L. Weinstein & B. N. Fields. New York: Thieme-Stratton.
  5. Cohen, M. S., Cannon, J. G., Jerse, A. E., Charniga, L., Isbey, S. & Whicker, L. ( 1994; ). Human experimentation with Neisseria gonorrhoeae: rationale, methods, and implications for the biology of infection and vaccine development. J Infect Dis 169, 532-537.[CrossRef]
    [Google Scholar]
  6. Dempsey, J. A. & Cannon, J. G. ( 1994; ). Locations of genetic markers on the physical map of the chromosome of Neisseria gonorrhoeae FA1090. J Bacteriol 176, 2055-2060.
    [Google Scholar]
  7. Dempsey, J. F., Litaker, W., Madhure, A., Snodgrass, T. & Cannon, J. G. ( 1991; ). Physical map of the chromosome of Neisseria gonorrhoeae FA1090 with locations of genetic markers, including opa and pil genes. J Bacteriol 173, 5476-5486.
    [Google Scholar]
  8. Forest, K. T., Dunham, S. A., Koomey, M. & Tainer, J. A. ( 1999; ). Crystallographic structure reveals phosphorylated pilin from Neisseria: phosphoserine sites modify type IV pilus surface chemistry and fibre morphology. Mol Microbiol 31, 743-752.[CrossRef]
    [Google Scholar]
  9. Haas, R. & Meyer, T. F. ( 1986; ). The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell 44, 107-115.[CrossRef]
    [Google Scholar]
  10. Haas, R., Schwarz, H. & Meyer, T. F. ( 1987; ). Release of soluble pilin antigen coupled with gene conversion in Neisseria gonorrhoeae. Proc Natl Acad Sci USA 84, 9079-9083.[CrossRef]
    [Google Scholar]
  11. Haas, R., Veit, S. & Meyer, T. F. ( 1992; ). Silent pilin genes of Neisseria gonorrhoeae MS11 and the occurrence of related hypervariant sequences among other gonococcal isolates. Mol Microbiol 6, 197-208.[CrossRef]
    [Google Scholar]
  12. Hagblom, P., Segal, E., Billyard, E. & So, M. ( 1985; ). Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae. Nature 315, 156-158.[CrossRef]
    [Google Scholar]
  13. Howell-Adams, B. & Seifert, H. S. ( 2000; ). Molecular models accounting for the gene conversion reactions mediating gonococcal pilin antigenic variation. Mol Microbiol 37, 1146-1158.[CrossRef]
    [Google Scholar]
  14. Jennings, M. P., Virji, M., Evans, D., Foster, V., Srikhanta, Y. N., Steeghs, L., van der Ley, P. & Moxon, E. R. ( 1998; ). Identification of a novel gene involved in pilin glycosylation in Neisseria meningitidis. Mol Microbiol 29, 975-984.[CrossRef]
    [Google Scholar]
  15. Jerse, A. E., Cohen, M. S., Drown, P. M., Whicker, L. G., Isbey, S. F., Seifert, H. S. & Cannon, J. G. ( 1994; ). Multiple gonococcal opacity proteins are expressed during experimental urethral infection in the male. J Exp Med 179, 911-920.[CrossRef]
    [Google Scholar]
  16. Jonsson, A.-B., Ilver, D., Falk, P., Pepose, J. & Normark, S. ( 1994; ). Sequence changes in the pilus subunit lead to tropism variation of Neisseria gonorrhoeae to human tissue. Mol Microbiol 13, 403-416.[CrossRef]
    [Google Scholar]
  17. Källström, H., Liszewski, M. K., Atkinson, J. P. & Jonsson, A.-B. ( 1997; ). Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria. Mol Microbiol 25, 639-647.[CrossRef]
    [Google Scholar]
  18. Kellogg, D. S., Peacock, W. L., Deacon, W. E., Brown, L. & Pirkle, C. I. ( 1963; ). Neisseria gonorrhoeae. 1. Virulence genetically linked to clonal variation. J Bacteriol 85, 1274-1279.
    [Google Scholar]
  19. Koomey, M., Gotschlich, E. C., Robbins, K., Bergstrom, S. & Swanson, J. ( 1987; ). Effects of recA mutations on pilus antigenic variation and phase transitions in Neisseria gonorrhoeae. Genetics 117, 391-398.
    [Google Scholar]
  20. Lambden, P. R., Robertson, J. N. & Watt, P. J. ( 1980; ). Biological properties of two distinct pilus types produced by isogenic variants of Neisseria gonorrhoeae P9. J Bacteriol 141, 393-396.
    [Google Scholar]
  21. Long, C. D., Madraswala, R. N. & Seifert, H. S. ( 1998; ). Comparisons between colony phase variation of Neisseria gonorrhoeae FA1090 and pilus, pilin, and S-pilin expression. Infect Immun 66, 1918-1927.
    [Google Scholar]
  22. Marceau, M. & Nassif, X. ( 1999; ). Role of glycosylation at Ser63 in production of soluble pilin in pathogenic Neisseria. J Bacteriol 181, 656-661.
    [Google Scholar]
  23. Marceau, M., Beretti, J. L. & Nassif, X. ( 1995; ). High adhesiveness of encapsulated Neisseria meningitidis to epithelial cells is associated with the formation of bundles of pili. Mol Microbiol 17, 855-863.[CrossRef]
    [Google Scholar]
  24. Marceau, M., Forest, K., Beretti, J. L., Tainer, J. & Nassif, X. ( 1998; ). Consequences of the loss of O-linked glycosylation of meningococcal type IV pilin on piliation and pilus-mediated adhesion. Mol Microbiol 27, 705-715.[CrossRef]
    [Google Scholar]
  25. Mehr, I. J. & Seifert, H. S. ( 1998; ). Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol Microbiol 30, 697-710.[CrossRef]
    [Google Scholar]
  26. Meyer, T. F., Billyard, E., Haas, R., Storzbach, S. & So, M. ( 1984; ). Pilus genes of Neisseria gonorrhoeae: chromosomal organization and DNA sequence. Proc Natl Acad Sci USA 81, 6110-6114.[CrossRef]
    [Google Scholar]
  27. Nassif, X. & So, M. ( 1995; ). Interaction of pathogenic neisseriae with nonphagocytic cells. Clin Microbiol Rev 8, 376-388.
    [Google Scholar]
  28. Nassif, X., Lowry, J., Stenberg, P., O’Gaora, P., Ganji, A. & So, M. ( 1993; ). Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. Mol Microbiol 8, 719-725.[CrossRef]
    [Google Scholar]
  29. Nassif, X., Pujol, C., Morand, P. & Eugène, E. ( 1999; ). Interactions of pathogenic Neisseria with host cells. Is it possible to assemble the puzzle? Mol Microbiol 32, 1124-1132.[CrossRef]
    [Google Scholar]
  30. Rudel, T., Scheuerpflug, I. & Meyer, T. F. ( 1995; ). Neisseria PilC protein identified as type-4 pilus tip-located adhesin. Nature 373, 357-362.[CrossRef]
    [Google Scholar]
  31. Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  32. Seifert, H. S. ( 1996; ). Questions about gonococcal pilus phase and antigenic variation. Mol Microbiol 21, 433-440.[CrossRef]
    [Google Scholar]
  33. Seifert, H. S., Wright, C. S., Jerse, A. E., Cohen, M. S. & Cannon, J. G. ( 1994; ). Multiple gonococcal pilin antigenic variants are produced during experimental human infections. J Clin Invest 93, 2744-2749.[CrossRef]
    [Google Scholar]
  34. Smith, H. O. & Birnstiel, M. L. ( 1976; ). A simple method for DNA restriction site mapping. Nucleic Acids Res 3, 2387-2398.[CrossRef]
    [Google Scholar]
  35. Swanson, J., Robbins, K., Barrera, O., Corwin, D., Boslego, J., Ciak, J., Blake, M. & Koomey, J. M. ( 1987; ). Gonococcal pilin variants in experimental gonorrhea. J Exp Med 165, 1344-1357.[CrossRef]
    [Google Scholar]
  36. Virji, M., Saunders, J. R., Sims, G., Makepeace, K., Maskell, D. & Ferguson, D. J. ( 1993; ). Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin. Mol Microbiol 10, 1013-1028.[CrossRef]
    [Google Scholar]
  37. Wainwright, L. A., Pritchard, K. H. & Seifert, H. S. ( 1994; ). A conserved DNA sequence is required for efficient gonococcal pilin antigenic variation. Mol Microbiol 13, 75-87.[CrossRef]
    [Google Scholar]
  38. Wainwright, L. A., Frangipane, J. V. & Seifert, H. S. ( 1997; ). Analysis of protein binding to the Sma/Cla DNA repeat in pathogenic neisseriae. Nucleic Acids Res 25, 1362-1368.[CrossRef]
    [Google Scholar]
  39. Wright, C. J., Jerse, A. E., Cohen, M. S., Cannon, J. G. & Seifert, H. S. ( 1994; ). Nonrepresentative PCR amplification of variable gene sequences in clinical specimens containing dilute, complex mixtures of microorganisms. J Clin Microbiol 32, 464-468.
    [Google Scholar]
  40. Zak, K., Diaz, J. L., Jackson, D. & Heckels, J. E. ( 1984; ). Antigenic variation during infection with Neisseria gonorrhoeae: detection of antibodies to surface proteins in sera of patients with gonorrhea. J Infect Dis 149, 166-174.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-4-839
Loading
/content/journal/micro/10.1099/00221287-147-4-839
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error