1887

Abstract

can encode numerous lipoproteins of the Erp family. Although initially described as outer surface proteins, the technique used in that earlier study has since been demonstrated to disrupt bacterial membranes and allow labelling of subsurface proteins. Data are now presented from additional analyses indicating that Erp proteins are indeed surface exposed in the outer membrane. Surface localization of these infection-associated proteins indicates the potential for interactions of Erp proteins with vertebrate tissues. Some Erp proteins were resistant to digestion by certain proteases, suggesting that those proteins fold in manners which hide protease cleavage sites, or that they interact with other protective membrane components. Additionally, cultivation of in the presence of antibodies directed against Erp proteins inhibited bacterial growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-821
2001-04-01
2019-09-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1470821a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-821&mimeType=html&fmt=ahah

References

  1. Akins, D. R., Porcella, S. F., Popova, T. G., Shevchenko, D., Baker, S. I., Li, M., Norgard, M. V. & Radolf, J. D. ( 1995; ). Evidence for in vivo but not in vitro expression of a Borrelia burgdorferi outer surface protein F (OspF) homologue. Mol Microbiol 18, 507-520.[CrossRef]
    [Google Scholar]
  2. Akins, D. R., Bourell, K. W., Caimano, M. J., Norgard, M. V. & Radolf, J. D. ( 1998; ). A new animal model for studying Lyme disease spirochetes in a mammalian host-adapted state. J Clin Invest 101, 2240-2250.[CrossRef]
    [Google Scholar]
  3. Anguita, J., Samanta, S., Revilla, B., Suk, K., Das, S., Barthold, S. W. & Fikrig, E. ( 2000; ). Borrelia burgdorferi gene expression in vivo and spirochete pathogenicity. Infect Immun 68, 1222-1230.[CrossRef]
    [Google Scholar]
  4. Barbour, A. G. ( 1984; ). Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57, 521-525.
    [Google Scholar]
  5. Barbour, A. G. & Hayes, S. F. ( 1986; ). Biology of Borrelia species. Microbiol Rev 50, 381-400.
    [Google Scholar]
  6. Barbour, A. G., Tessier, S. L. & Todd, W. J. ( 1983b; ). Lyme disease spirochetes and ixodid tick spirochetes share a common surface antigenic determinant defined by a monoclonal antibody. Infect Immun 41, 795-804.
    [Google Scholar]
  7. Barbour, A. G., Burgdorfer, W., Hayes, S. F., Peter, O. & Aeschlimann, A. ( 1983b; ). Isolation of a cultivable spirochete from Ixodes ricinus ticks of Switzerland. Curr Microbiol 8, 123-126.[CrossRef]
    [Google Scholar]
  8. Barbour, A. G., Hayes, S. F., Heiland, R. A., Schrumpf, M. E. & Tessier, S. L. ( 1986; ). A Borrelia-specific monoclonal antibody binds to a flagellar epitope. Infect Immun 52, 549-554.
    [Google Scholar]
  9. Beck, G., Habicht, G. S., Benach, J. L. & Coleman, J. L. ( 1985; ). Chemical and biologic characterization of a lipopolysaccharide extracted from the Lyme disease spirochete (Borrelia burgdorferi). J Infect Dis 152, 108-117.[CrossRef]
    [Google Scholar]
  10. Bledsoe, H. A., Carroll, J. A., Whelchel, T. R., Farmer, M. A., Dorward, D. W. & Gherardini, F. C. ( 1994; ). Isolation and partial characterization of Borrelia burgdorferi inner and outer membranes by using isopycnic centrifugation. J Bacteriol 176, 7447-7455.
    [Google Scholar]
  11. Bono, J. L., Tilly, K., Stevenson, B., Hogan, D. & Rosa, P. ( 1998; ). Oligopeptide permease in Borrelia burgdorferi: putative peptide-binding components encoded by both chromosomal and plasmid loci. Microbiology 144, 1033-1044.[CrossRef]
    [Google Scholar]
  12. Bono, J. L., Elias, A. F., Kupko, J. J., Stevenson, B., Tilly, K. & Rosa, P. ( 2000; ). Efficient targeted mutagenesis in Borrelia burgdorferi. J Bacteriol 182, 2445-2452.[CrossRef]
    [Google Scholar]
  13. Brusca, J. S., McDowall, A. W., Norgard, M. V. & Radolf, J. D. ( 1991; ). Localization of outer surface proteins A and B in both the outer membrane and intracellular compartments of Borrelia burgdorferi. J Bacteriol 173, 8004-8008.
    [Google Scholar]
  14. Bunikis, J. & Barbour, A. G. ( 1999; ). Access of antibody or trypsin to an integral outer membrane protein (P66) of Borrelia burgdorferi is hindered by Osp lipoproteins. Infect Immun 67, 2874-2883.
    [Google Scholar]
  15. Burgdorfer, W., Barbour, A. G., Hayes, S. F., Benach, J. L., Grunwaldt, E. & Davis, J. P. ( 1982; ). Lyme disease – a tick-borne spirochetosis? Science 216, 1317-1319.[CrossRef]
    [Google Scholar]
  16. Casjens, S., van Vugt, R., Tilly, K., Rosa, P. A. & Stevenson, B. ( 1997; ). Homology throughout the multiple 32-kilobase circular plasmids present in Lyme disease spirochetes. J Bacteriol 179, 217-227.
    [Google Scholar]
  17. Casjens, S., Palmer, N., van Vugt, R. & 12 other authors ( 2000; ). A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs of an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35, 490–516.
    [Google Scholar]
  18. Cinco, M. ( 1992; ). Selection of a Borrelia burgdorferi antigenic variant by cultivation in the presence of increasing amounts of homologous immune serum. FEMS Microbiol Lett 92, 15-18.[CrossRef]
    [Google Scholar]
  19. Cinco, M., Banfi, E., Balanzin, D., Godeas, C. & Panfili, E. ( 1991; ). Evidence for (lipo)oligosaccharides in Borrelia burgdorferi and their serological specificity. FEMS Microbiol Lett 76, 33-38.[CrossRef]
    [Google Scholar]
  20. Coburn, J., Chege, W., Magoun, L., Bodary, S. C. & Leong, J. M. ( 1999; ). Characterization of a candidate Borrelia burgdorferi β3-chain integrin ligand identified using a phage display library. Mol Microbiol 34, 926-940.[CrossRef]
    [Google Scholar]
  21. Coleman, J. L., Rogers, R. C. & Benach, J. L. ( 1992; ). Selection of an escape variant of Borrelia burgdorferi by use of bacteriocidal monoclonal antibodies to OspB. Infect Immun 60, 3098-3104.
    [Google Scholar]
  22. Cox, D. L., Akins, D. R., Bourell, K. W., Lahdenne, P., Norgard, M. V. & Radolf, J. D. ( 1996; ). Limited surface exposure of Borrelia burgdorferi outer surface lipoproteins. Proc Natl Acad Sci USA 93, 7973-7978.[CrossRef]
    [Google Scholar]
  23. Cunningham, T. M., Thomas, D. D., Thompson, S. D., Miller, J. N. & Lovett, M. A. ( 1988; ). Identification of Borrelia burgdorferi surface components by Triton X-114 phase partitioning. Ann N Y Acad Sci 539, 376-378.[CrossRef]
    [Google Scholar]
  24. Das, S., Barthold, S. W., Stocker Giles, S., Montgomery, R. R., Telford, S. R. & Fikrig, E. ( 1997; ). Temporal pattern of Borrelia burgdorferi p21 expression in ticks and the mammalian host. J Clin Invest 99, 987-995.[CrossRef]
    [Google Scholar]
  25. Dunn, J. J., Lade, B. N. & Barbour, A. G. ( 1990; ). Outer surface protein A (OspA) from the Lyme disease spirochete, Borrelia burgdorferi: high level expression and purification of a soluble recombinant form of OspA. Protein Expr Purif 1, 159-168.[CrossRef]
    [Google Scholar]
  26. Eiffert, H., Lotter, H., Jarecki-Khan, K. & Thomssen, R. ( 1991; ). Identification of an immunreactive non-proteinaceous component in Borrelia burgdorferi. Med Microbiol Immunol 180, 229-237.
    [Google Scholar]
  27. El-Hage, N., Lieto, L. D. & Stevenson, B. ( 1999; ). Stability of erp loci during Borrelia burgdorferi infection: recombination is not required for chronic infection of immunocompetent mice. Infect Immun 67, 3146-3150.
    [Google Scholar]
  28. Exner, M. M., Wu, X., Blanco, D. R., Miller, J. N. & Lovett, M. A. ( 2000; ). Protection elicited by native outer membrane protein Oms66 (p66) against host-adapted Borrelia burgdorferi: conformational nature of bacteriocidal epitopes. Infect Immun 68, 2647-2654.[CrossRef]
    [Google Scholar]
  29. Fuchs, R., Jauris, S., Lottspeich, F., Preac-Mursic, V., Wilske, B. & Soutschek, E. ( 1992; ). Molecular analysis and expression of a Borrelia burgdorferi gene encoding a 22 kDa protein (pC) in Escherichia coli. Mol Microbiol 6, 503-509.[CrossRef]
    [Google Scholar]
  30. Gilmore, R. D.Jr & Mbow, M. L. ( 1998; ). A monoclonal antibody generated by antigen inoculation via tick bite is reactive to the Borrelia burgdorferi Rev protein, a member of the 2.9 gene family locus. Infect Immun 66, 980-986.
    [Google Scholar]
  31. Gilmore, R. D.Jr & Mbow, M. L. ( 1999; ). Conformational nature of the Borrelia burgdorferi B31 outer surface protein C protective epitope. Infect Immun 67, 5463-5469.
    [Google Scholar]
  32. Guo, B. P., Norris, S. J., Rosenberg, L. C. & Höök, M. ( 1995; ). Adherence of Borrelia burgdorferi to the proteoglycan decorin. Infect Immun 63, 3467-3472.
    [Google Scholar]
  33. Haake, D. A. ( 2000; ). Spirochaetal lipoproteins and pathogenesis. Microbiology 146, 1491-1504.
    [Google Scholar]
  34. Hanson, M. S., Cassatt, D. R., Guo, B. P., Patel, N. K., McCarthy, M. P., Dorward, D. W. & Höök, M. ( 1998; ). Active and passive immunity against Borrelia burgdorferi decorin binding protein A (DbpA) protects against infection. Infect Immun 66, 2143-2153.
    [Google Scholar]
  35. Hellwage, J., Meri, T., Heikkilä, T., Alitalo, A., Panelius, J., Lahdenne, P., Seppälä, I. J. T. & Meri, S. (2001). The complement regulatory factor H binds to the surface protein OspE of Borrelia burgdorferi. J Biol Chem 276 (in press).
  36. Holt, S. C. ( 1978; ). Anatomy and chemistry of spirochetes. Microbiol Rev 42, 114-160.
    [Google Scholar]
  37. Jones, J. D., Bourell, K. W., Norgard, M. V. & Radolf, J. D. ( 1995; ). Membrane topology of Borrelia burgdorferi and Treponema pallidum lipoproteins. Infect Immun 63, 2424-2434.
    [Google Scholar]
  38. Lam, T. T., Nguyen, T.-P. K., Montgomery, R. R., Kantor, F. S., Fikrig, E. & Flavell, R. A. ( 1994; ). Outer surface proteins E and F of Borrelia burgdorferi, the agent of Lyme disease. Infect Immun 62, 290-298.
    [Google Scholar]
  39. Luft, B. J., Jiang, W., Munoz, P., Dattwyler, R. J. & Gorevic, P. D. ( 1989; ). Biochemical and immunological characterization of the surface proteins of Borrelia burgdorferi. Infect Immun 57, 3637-3645.
    [Google Scholar]
  40. Luke, C. J., Marshall, M. A., Zahradnik, J. M., Bybel, M., Menefee, B. E. & Barbour, A. G. ( 2000; ). Growth-inhibiting antibody responses of humans vaccinated with recombinant outer surface protein A or infected with Borrelia burgdorferi or both. J Infect Dis 181, 1062-1068.[CrossRef]
    [Google Scholar]
  41. Marconi, R. T., Sung, S. Y., Norton Hughes, C. A. & Carlyon, J. A. ( 1996; ). Molecular and evolutionary analyses of a variable series of genes in Borrelia burgdorferi that are related to ospE and ospF, constitute a gene family, and share a common upstream homology box. J Bacteriol 178, 5615-5626.
    [Google Scholar]
  42. Mathiesen, M. J., Holm, A., Christiansen, M., Blom, J., Hansen, K., Østergaard, S. & Theisen, M. ( 1998; ). The dominant epitope of Borrelia garinii outer surface protein C recognized by sera from patients with neuroborreliosis has a surface-exposed conserved structural motif. Infect Immun 66, 4073-4079.
    [Google Scholar]
  43. Mbow, M. L., Gilmore, R. D.Jr & Titus, R. G. ( 1999; ). An OspC-specific monoclonal antibody passively protects mice from tick-transmitted infection by Borrelia burgdorferi B31. Infect Immun 67, 5470-5472.
    [Google Scholar]
  44. Miller, J. C., Bono, J. L., Babb, K., El-Hage, N., Casjens, S. & Stevenson, B. ( 2000a; ). A second allele of eppA in Borrelia burgdorferi strain B31 is located on the previously undetected circular plasmid cp9-2. J Bacteriol 182, 6254-6258.[CrossRef]
    [Google Scholar]
  45. Miller, J. C., El-Hage, N., Babb, K. & Stevenson, B. ( 2000b; ). Borrelia burgdorferi B31 Erp proteins that are dominant immunoblot antigens of animals infected with isolate B31 are recognized by only a subset of human Lyme disease patient sera. J Clin Microbiol 38, 1569-1574.
    [Google Scholar]
  46. Nguyen, T.-P. K., Lam, T. T., Barthold, S. W., Telford, S. R., Flavell, R. A. & Fikrig, E. ( 1994; ). Partial destruction of Borrelia burgdorferi within ticks that engorged on OspE- or OspF-immunized mice. Infect Immun 62, 2079-2084.
    [Google Scholar]
  47. Parveen, N. & Leong, J. M. ( 2000; ). Identification of a candidate glycosaminoglycan-binding adhesin of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35, 1220-1234.[CrossRef]
    [Google Scholar]
  48. Pavia, C. S., Kissel, V., Bittker, S., Cabello, F. & Levine, S. ( 1991; ). Antiborrelial activity of serum from rats injected with the Lyme disease spirochete. J Infect Dis 163, 656-659.[CrossRef]
    [Google Scholar]
  49. Radolf, J. D. ( 1994; ). Role of outer membrane architecture in immune evasion by Treponema pallidum and Borrelia burgdorferi. Trends Microbiol 2, 307-311.[CrossRef]
    [Google Scholar]
  50. Radolf, J. D., Bourell, K. W., Akins, D. R., Brusca, J. S. & Norgard, M. V. ( 1994; ). Analysis of Borrelia burgdorferi membrane architecture by freeze-fracture electron microscopy. J Bacteriol 176, 21-31.
    [Google Scholar]
  51. Radolf, J. D., Goldberg, M. S., Bourell, K., Baker, S. I., Jones, J. D. & Norgard, M. V. ( 1995; ). Characterization of outer membranes isolated from Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 63, 2154-2163.
    [Google Scholar]
  52. Sadziene, A., Thompson, P. A. & Barbour, A. G. ( 1993; ). In vitro inhibition of Borrelia burgdorferi growth by antibodies. J Infect Dis 167, 165-172.[CrossRef]
    [Google Scholar]
  53. Schultz, C. P., Wolf, V., Lange, R., Mertens, E., Wecke, J., Naumann, D. & Zähringer, U. ( 1998; ). Evidence for a new type of outer membrane lipid in oral spirochete Treponema denticola. J Biol Chem 273, 15661-15666.[CrossRef]
    [Google Scholar]
  54. Schwan, T. G., Piesman, J., Golde, W. T., Dolan, M. C. & Rosa, P. A. ( 1995; ). Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci USA 92, 2909-2913.[CrossRef]
    [Google Scholar]
  55. Schwan, T. G., Burgdorfer, W. & Rosa, P. A. ( 1999; ). Borrelia. In Manual of Clinical Microbiology , pp. 746-758. Edited by P. R. Murray, E. J. Baron, M. A. Pfaller, F. C. Tenover & R. H. Yolken. Washington, DC: American Society for Microbiology.
  56. Stevenson, B., Schwan, T. G. & Rosa, P. A. ( 1995; ). Temperature-related differential expression of antigens in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 63, 4535-4539.
    [Google Scholar]
  57. Stevenson, B., Tilly, K. & Rosa, P. A. ( 1996; ). A family of genes located on four separate 32-kilobase circular plasmids in Borrelia burgdorferi B31. J Bacteriol 178, 3508-3516.
    [Google Scholar]
  58. Stevenson, B., Bono, J. L., Schwan, T. G. & Rosa, P. ( 1998a; ). Borrelia burgdorferi Erp proteins are immunogenic in mammals infected by tick bite, and their synthesis is inducible in cultured bacteria. Infect Immun 66, 2648-2654.
    [Google Scholar]
  59. Stevenson, B., Casjens, S. & Rosa, P. ( 1998b; ). Evidence of past recombination events among the genes encoding the Erp antigens of Borrelia burgdorferi. Microbiology 144, 1869-1879.[CrossRef]
    [Google Scholar]
  60. Stevenson, B., Porcella, S. F., Oie, K. L., Fitzpatrick, C. A., Raffel, S. J., Lubke, L., Schrumpf, M. E. & Schwan, T. G. ( 2000a; ). The relapsing fever spirochete Borrelia hermsii contains multiple, antigen-encoding circular plasmids that are homologous to the cp32 plasmids of Lyme disease spirochetes. Infect Immun 68, 3900-3908.[CrossRef]
    [Google Scholar]
  61. Stevenson, B., Zückert, W. R. & Akins, D. R. ( 2000b; ). Repetition, conservation, and variation: the multiple cp32 plasmids of Borrelia species. J Mol Microbiol Biotechnol 2, 411-422.
    [Google Scholar]
  62. Suk, K., Das, S., Sun, W., Jwang, B., Barthold, S. W., Flavell, R. A. & Fikrig, E. ( 1995; ). Borrelia burgdorferi genes selectively expressed in the infected host. Proc Natl Acad Sci USA 92, 4269-4273.[CrossRef]
    [Google Scholar]
  63. Sung, S. Y., McDowell, J. V., Carlyon, J. A. & Marconi, R. T. ( 2000; ). Mutation and recombination in the upstream homology box-flanked ospE-related genes of the Lyme disease spirochetes result in the development of new antigenic variants during infection. Infect Immun 68, 1319-1327.[CrossRef]
    [Google Scholar]
  64. Takayama, K., Rothenberg, R. J. & Barbour, A. G. ( 1987; ). Absence of lipopolysaccharide in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 55, 2311-2313.
    [Google Scholar]
  65. Wallich, R., Brenner, C., Kramer, M. D. & Simon, M. M. ( 1995; ). Molecular cloning and immunological characterization of a novel linear-plasmid-encoded gene, pG, of Borrelia burgdorferi expressed only in vivo. Infect Immun 63, 3327-3335.
    [Google Scholar]
  66. Wheeler, C. M., Monco, J. C. G., Benach, J. L., Golightly, M. G., Habicht, G. S. & Steere, A. C. ( 1993; ). Nonprotein antigens of Borrelia burgdorferi. J Infect Dis 167, 665-674.[CrossRef]
    [Google Scholar]
  67. Wilske, B., Preac-Mursic, V., Jauris, S., Hofmann, A., Pradel, I., Soutschek, E., Schwab, E., Will, G. & Wanner, G. ( 1993; ). Immunological and molecular polymorphisms of OspC, an immunodominant major outer surface protein of Borrelia burgdorferi. Infect Immun 61, 2182-2191.
    [Google Scholar]
  68. Zückert, W. R., Kerentseva, T. A., Lawson, C. L. & Barbour, A. G. ( 2001; ). Structure analysis of the neurotropism-associated Borrelia turicatae VspA lipoprotein. J Biol Chem 276, 457-463.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-4-821
Loading
/content/journal/micro/10.1099/00221287-147-4-821
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error