1887

Abstract

Haemagglutinin (HA) activity of type A 19S and 16S toxins (HA-positive progenitor toxin; HA-PTX) was characterized. HA titres against human erythrocytes of HA-PTX were inhibited by the addition of lactose, D-galactose, -acetyl-D-galactosamine and D-fucose to the reaction mixtures. A direct glycolipid binding test demonstrated that type A HA-PTX strongly bound to paragloboside and some neutral glycolipids, but did not bind to gangliosides. Type A HA-PTX also bound to asialoglycoproteins (asialofetuin, neuraminidase-treated transferrin), but not to sialoglycoproteins (fetuin, transferrin). Although glycopeptidase F treatment of asialofetuin abolished the binding of HA-PTX, endo-α--acetylgalactosaminidase treatment did not. Thus these results can be interpreted as indicating that type A HA-PTX detects and binds to Galβ1-4GlcNAc in paragloboside and the -linked oligosaccharides of glycoproteins. Regardless of neuraminidase treatment, type A HA-PTX bound to glycophorin A which is a major sialoglycoprotein on the surface of erythrocytes. Both native glycophorin A and neuraminidase-treated glycophorin A inhibited the binding of erythrocytes to type A HA-PTX. Since the -linked oligosaccharide of glycophorin A is di-branched and more than 50% of this sugar chain is monosialylated, type A HA-PTX probably bound to the unsialylated branch of the -linked oligosaccharide of glycophorin A and agglutinated erythrocytes. One subcomponent of HA, designated HA1, did not agglutinate native erythrocytes, although it did bind to erythrocytes, paragloboside and asialoglycoproteins in a manner quite similar to that of HA-PTX. These results indicate that type A HA-PTX binds to oligosaccharides through HA1.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-811
2001-04-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1470811a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-811&mimeType=html&fmt=ahah

References

  1. Balding P., Gold E. R., Boroff D. A., Roberts T. A. 1973; Observations on receptor specific proteins. II. Hemagglutination and hemagglutination-inhibition reactions of Clostridium botulinum types A, C, D, and E hemagglutinins. Immunology 25:773–782
    [Google Scholar]
  2. Carr S. A., Huddleston M. J., Bean M. F. 1993; Selective identification and differentiation of N - and O -linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci 2:183–196
    [Google Scholar]
  3. Dasgupta B. R., Sugiyama H. 1977; Inhibition of Clostridium botulinum type A and B hemagglutinins by sugars. Can J Microbiol 23:1257–1260 [CrossRef]
    [Google Scholar]
  4. Fu F. N., Sharma S. K., Singh B. R. 1998; A protease-resistant novel hemagglutinin purified from type A Clostridium botulinum. J Protein Chem 17:53–60 [CrossRef]
    [Google Scholar]
  5. Fujinaga Y., Inoue K., Shimazaki S. 8 other authors 1994; Molecular construction of Clostridium botulinum type C progenitor toxin and its gene organization. Biochem Biophys Res Commun 205:1291–1298 [CrossRef]
    [Google Scholar]
  6. Fujinaga Y., Inoue K., Watanabe S., Yokota K., Hirai Y., Nagamachi E., Oguma K. 1997; The haemagglutinin of Clostridium botulinum type C progenitor toxin plays an essential role in binding of toxin to the epithelial cells of guinea pig small intestine, leading to the efficient absorption of the toxin. Microbiology 143:3841–3847 [CrossRef]
    [Google Scholar]
  7. Fujinaga Y., Inoue K., Nomura T., Sasaki J., Marvayd J. C., Popoff M. R., Kozaki S., Oguma K. 2000; Identification and characterization of functional subunits of Clostridium botulinum type A progenitor toxin involved in binding to intestinal microvilli and erythrocytes. FEBS Lett 467:179–183 [CrossRef]
    [Google Scholar]
  8. Furthmayr H., Tomita M., Marchesi V. T. 1975; Fractionation of the major sialoglycopeptides of the human red blood cell membrane. Biochem Biophys Res Commun 65:113–121 [CrossRef]
    [Google Scholar]
  9. Gasa S., Makita A., Kinoshita Y. 1983; Further study of the chemical structure of the equine erythrocyte hematoside containing O -acetyl ester. J Biol Chem 258:876–881
    [Google Scholar]
  10. Green E. D., Adelt G., Baenzinger J. U., Wilson S., Halbeek H. V. 1988; The asparagine-linked oligosaccharides on bovine fetuin. J Biol Chem 263:18253–18268
    [Google Scholar]
  11. Hirano H., Watanabe T. 1990; Microsequencing of proteins electrotransferred onto immobilizing matrices from polyacrylamide gel electrophoresis: application to an insoluble protein. Electrophoresis 11:573–580 [CrossRef]
    [Google Scholar]
  12. Hoschutzky I., Lottspeich F., Jann K. 1989; Isolation and characterization of the alpha-galactosyl-1,4-beta-galactosyl-specific adhesin (P adhesin) from fimbriated Escherichia coli . Infect Immun 57:76–81
    [Google Scholar]
  13. Inoue K., Fujinaga Y., Watanabe T., Ohyama T., Takeshi K., Moriishi K., Nakajima H., Inoue K., Oguma K. 1996; Molecular composition of Clostridium botulinum type A progenitor toxins. Infect Immun 64:1589–1594
    [Google Scholar]
  14. Inoue K., Fujinaga Y., Honke K. 7 other authors 1999; Characterization of haemagglutinin activity of Clostridium botulinum type C and D 16S toxins, and one subcomponent of haemagglutinin (HA1. Microbiology 145:2533–2542
    [Google Scholar]
  15. Kamata Y., Yoshimoto M., Kozaki S. 1997; Interaction between botulinum neurotoxin type A and ganglioside: ganglioside inactivates the neurotoxin and quenches its tryptophan fluorescence. Toxicon 35:1337–1340 [CrossRef]
    [Google Scholar]
  16. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  17. Maksymowych A. B., Simpson L. L. 1998; Binding and transcytosis of botulinum neurotoxin by polarized human colon carcinoma cells. J Biol Chem 273:21950–21957 [CrossRef]
    [Google Scholar]
  18. Maksymowych A. B., Reinhard M., Malizio C. J., Goodnough M. C., Johnson E. A., Simpson L. L. 1999; Pure botulinum neurotoxin is absorbed from the stomach and small intestine and produces peripheral neuromuscular blockade. Infect Immun 67:4708–4712
    [Google Scholar]
  19. Marchesi V. T., Tillack T. W., Jackson R. L., Segrest J. P., Scott R. E. 1972; Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane. Proc Natl Acad Sci USA 69:1445–1449 [CrossRef]
    [Google Scholar]
  20. Oguma K., Inoue K., Fujinaga Y., Yokota K., Watanabe T., Ohyama T., Takeshi K., Inoue K. 1999; Structure and function of Clostridium botulinum progenitor toxin. J Toxicol-Toxin Rev 18:17–34 [CrossRef]
    [Google Scholar]
  21. Ohishi I., Sakaguchi G. 1980; Oral toxicities of Clostridium botulinum type C and D toxins of different molecular sizes. Infect Immun 28:303–309
    [Google Scholar]
  22. Ohishi I., Sugii S., Sakaguchi G. 1977; Oral toxicities of Clostridium botulinum toxins in response to molecular size. Infect Immun 16:107–109
    [Google Scholar]
  23. Sakaguchi G., Kozaki S., Ohishi I. 1984; Structure and function of botulinum toxins. In Bacterial Protein Toxins pp 435–443 Edited by Alouf J. E., Fehrenbach F. J., Freer J. H., Jeljasawicz J. London: Academic Press;
    [Google Scholar]
  24. Sugii S., Ohishi I., Sakaguchi G. 1977; Correlation between oral toxicity and in vitro stability of Clostridium botulinum type A and B toxins of different molecular sizes. Infect Immun 16:910–914
    [Google Scholar]
  25. Tomita M., Furthmayr H., Marchesi V. T. 1975; Primary structure of human erythrocyte glycophorin A: isolation and characterization of peptides and complete amino acid sequence. Biochemistry 17:4756–4770
    [Google Scholar]
  26. Yamashita K., Ideo H., Ohkura T., Fukushima K., Yuasa I., Ohno K., Takeshita K. 1993; Sugar chains of serum transferrin from patients with carbohydrate deficient glycoprotein syndrome: evidence of asparagine- N -linked oligosaccharide transfer deficiency. J Biol Chem 268:5783–5789
    [Google Scholar]
  27. Yoshida H., Furthmayr H., Kobata A. 1980; Structure of the asparagine-linked sugar chains of glycophorin A. J Biol Chem 255:9713–9718
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-4-811
Loading
/content/journal/micro/10.1099/00221287-147-4-811
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error