1887

Abstract

Haemagglutinin (HA) activity of type A 19S and 16S toxins (HA-positive progenitor toxin; HA-PTX) was characterized. HA titres against human erythrocytes of HA-PTX were inhibited by the addition of lactose, D-galactose, -acetyl-D-galactosamine and D-fucose to the reaction mixtures. A direct glycolipid binding test demonstrated that type A HA-PTX strongly bound to paragloboside and some neutral glycolipids, but did not bind to gangliosides. Type A HA-PTX also bound to asialoglycoproteins (asialofetuin, neuraminidase-treated transferrin), but not to sialoglycoproteins (fetuin, transferrin). Although glycopeptidase F treatment of asialofetuin abolished the binding of HA-PTX, endo-α--acetylgalactosaminidase treatment did not. Thus these results can be interpreted as indicating that type A HA-PTX detects and binds to Galβ1-4GlcNAc in paragloboside and the -linked oligosaccharides of glycoproteins. Regardless of neuraminidase treatment, type A HA-PTX bound to glycophorin A which is a major sialoglycoprotein on the surface of erythrocytes. Both native glycophorin A and neuraminidase-treated glycophorin A inhibited the binding of erythrocytes to type A HA-PTX. Since the -linked oligosaccharide of glycophorin A is di-branched and more than 50% of this sugar chain is monosialylated, type A HA-PTX probably bound to the unsialylated branch of the -linked oligosaccharide of glycophorin A and agglutinated erythrocytes. One subcomponent of HA, designated HA1, did not agglutinate native erythrocytes, although it did bind to erythrocytes, paragloboside and asialoglycoproteins in a manner quite similar to that of HA-PTX. These results indicate that type A HA-PTX binds to oligosaccharides through HA1.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-811
2001-04-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1470811a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-811&mimeType=html&fmt=ahah

References

  1. Balding, P., Gold, E. R., Boroff, D. A. & Roberts, T. A. ( 1973; ). Observations on receptor specific proteins. II. Hemagglutination and hemagglutination-inhibition reactions of Clostridium botulinum types A, C, D, and E hemagglutinins. Immunology 25, 773-782.
    [Google Scholar]
  2. Carr, S. A., Huddleston, M. J. & Bean, M. F. ( 1993; ). Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci 2, 183-196.
    [Google Scholar]
  3. Dasgupta, B. R. & Sugiyama, H. ( 1977; ). Inhibition of Clostridium botulinum type A and B hemagglutinins by sugars. Can J Microbiol 23, 1257-1260.[CrossRef]
    [Google Scholar]
  4. Fu, F. N., Sharma, S. K. & Singh, B. R. ( 1998; ). A protease-resistant novel hemagglutinin purified from type A Clostridium botulinum. J Protein Chem 17, 53-60.[CrossRef]
    [Google Scholar]
  5. Fujinaga, Y., Inoue, K., Shimazaki, S. & 8 other authors ( 1994; ). Molecular construction of Clostridium botulinum type C progenitor toxin and its gene organization. Biochem Biophys Res Commun 205, 1291–1298.[CrossRef]
    [Google Scholar]
  6. Fujinaga, Y., Inoue, K., Watanabe, S., Yokota, K., Hirai, Y., Nagamachi, E. & Oguma, K. ( 1997; ). The haemagglutinin of Clostridium botulinum type C progenitor toxin plays an essential role in binding of toxin to the epithelial cells of guinea pig small intestine, leading to the efficient absorption of the toxin. Microbiology 143, 3841-3847.[CrossRef]
    [Google Scholar]
  7. Fujinaga, Y., Inoue, K., Nomura, T., Sasaki, J., Marvayd, J. C., Popoff, M. R., Kozaki, S. & Oguma, K. ( 2000; ). Identification and characterization of functional subunits of Clostridium botulinum type A progenitor toxin involved in binding to intestinal microvilli and erythrocytes. FEBS Lett 467, 179-183.[CrossRef]
    [Google Scholar]
  8. Furthmayr, H., Tomita, M. & Marchesi, V. T. ( 1975; ). Fractionation of the major sialoglycopeptides of the human red blood cell membrane. Biochem Biophys Res Commun 65, 113-121.[CrossRef]
    [Google Scholar]
  9. Gasa, S., Makita, A. & Kinoshita, Y. ( 1983; ). Further study of the chemical structure of the equine erythrocyte hematoside containing O-acetyl ester. J Biol Chem 258, 876-881.
    [Google Scholar]
  10. Green, E. D., Adelt, G., Baenzinger, J. U., Wilson, S. & Halbeek, H. V. ( 1988; ). The asparagine-linked oligosaccharides on bovine fetuin. J Biol Chem 263, 18253-18268.
    [Google Scholar]
  11. Hirano, H. & Watanabe, T. ( 1990; ). Microsequencing of proteins electrotransferred onto immobilizing matrices from polyacrylamide gel electrophoresis: application to an insoluble protein. Electrophoresis 11, 573-580.[CrossRef]
    [Google Scholar]
  12. Hoschutzky, I., Lottspeich, F. & Jann, K. ( 1989; ). Isolation and characterization of the alpha-galactosyl-1,4-beta-galactosyl-specific adhesin (P adhesin) from fimbriated Escherichia coli. Infect Immun 57, 76-81.
    [Google Scholar]
  13. Inoue, K., Fujinaga, Y., Watanabe, T., Ohyama, T., Takeshi, K., Moriishi, K., Nakajima, H., Inoue, K. & Oguma, K. ( 1996; ). Molecular composition of Clostridium botulinum type A progenitor toxins. Infect Immun 64, 1589-1594.
    [Google Scholar]
  14. Inoue, K., Fujinaga, Y., Honke, K. & 7 other authors ( 1999; ). Characterization of haemagglutinin activity of Clostridium botulinum type C and D 16S toxins, and one subcomponent of haemagglutinin (HA1). Microbiology 145, 2533–2542.
    [Google Scholar]
  15. Kamata, Y., Yoshimoto, M. & Kozaki, S. ( 1997; ). Interaction between botulinum neurotoxin type A and ganglioside: ganglioside inactivates the neurotoxin and quenches its tryptophan fluorescence. Toxicon 35, 1337-1340.[CrossRef]
    [Google Scholar]
  16. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  17. Maksymowych, A. B. & Simpson, L. L. ( 1998; ). Binding and transcytosis of botulinum neurotoxin by polarized human colon carcinoma cells. J Biol Chem 273, 21950-21957.[CrossRef]
    [Google Scholar]
  18. Maksymowych, A. B., Reinhard, M., Malizio, C. J., Goodnough, M. C., Johnson, E. A. & Simpson, L. L. ( 1999; ). Pure botulinum neurotoxin is absorbed from the stomach and small intestine and produces peripheral neuromuscular blockade. Infect Immun 67, 4708-4712.
    [Google Scholar]
  19. Marchesi, V. T., Tillack, T. W., Jackson, R. L., Segrest, J. P. & Scott, R. E. ( 1972; ). Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane. Proc Natl Acad Sci USA 69, 1445-1449.[CrossRef]
    [Google Scholar]
  20. Oguma, K., Inoue, K., Fujinaga, Y., Yokota, K., Watanabe, T., Ohyama, T., Takeshi, K. & Inoue, K. ( 1999; ). Structure and function of Clostridium botulinum progenitor toxin. J Toxicol-Toxin Rev 18, 17-34.[CrossRef]
    [Google Scholar]
  21. Ohishi, I. & Sakaguchi, G. ( 1980; ). Oral toxicities of Clostridium botulinum type C and D toxins of different molecular sizes. Infect Immun 28, 303-309.
    [Google Scholar]
  22. Ohishi, I., Sugii, S. & Sakaguchi, G. ( 1977; ). Oral toxicities of Clostridium botulinum toxins in response to molecular size. Infect Immun 16, 107-109.
    [Google Scholar]
  23. Sakaguchi, G., Kozaki, S. & Ohishi, I. ( 1984; ). Structure and function of botulinum toxins. In Bacterial Protein Toxins , pp. 435-443. Edited by J. E. Alouf, F. J. Fehrenbach, J. H. Freer & J. Jeljasawicz. London: Academic Press.
  24. Sugii, S., Ohishi, I. & Sakaguchi, G. ( 1977; ). Correlation between oral toxicity and in vitro stability of Clostridium botulinum type A and B toxins of different molecular sizes. Infect Immun 16, 910-914.
    [Google Scholar]
  25. Tomita, M., Furthmayr, H. & Marchesi, V. T. ( 1975; ). Primary structure of human erythrocyte glycophorin A: isolation and characterization of peptides and complete amino acid sequence. Biochemistry 17, 4756-4770.
    [Google Scholar]
  26. Yamashita, K., Ideo, H., Ohkura, T., Fukushima, K., Yuasa, I., Ohno, K. & Takeshita, K. ( 1993; ). Sugar chains of serum transferrin from patients with carbohydrate deficient glycoprotein syndrome: evidence of asparagine-N-linked oligosaccharide transfer deficiency. J Biol Chem 268, 5783-5789.
    [Google Scholar]
  27. Yoshida, H., Furthmayr, H. & Kobata, A. ( 1980; ). Structure of the asparagine-linked sugar chains of glycophorin A. J Biol Chem 255, 9713-9718.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-4-811
Loading
/content/journal/micro/10.1099/00221287-147-4-811
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error