1887
Preview this article:
Zoom in
Zoomout

The roles of plasmids in phytopathogenic bacteria: mobile arsenals?, Page 1 of 1

| /docserver/preview/fulltext/micro/147/4/1470763a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-763
2001-04-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1470763a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-763&mimeType=html&fmt=ahah

References

  1. Alarcón-Chaidez, F. J., Peñaloza-Vázquez, A., Ullrich, M. & Bender, C. ( 1999; ). Characterization of plasmids encoding the phytotoxin coronatine in Pseudomonas syringae. Plasmid 42, 210-220.[CrossRef]
    [Google Scholar]
  2. Alfano, J. R. & Collmer, A. ( 1997; ). The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins and death. J Bacteriol 179, 5655-5662.
    [Google Scholar]
  3. Anderson, D. M., Fouts, D. E., Collmer, A. & Schneewind, O. ( 1999; ). Reciprocal secretion of proteins by bacterial type III machines of plant and animal pathogens suggests universal recognition of mRNA targeting signals. Proc Natl Acad Sci USA 96, 12839-12843.[CrossRef]
    [Google Scholar]
  4. Arnold, D. L., Brown, J., Jackson, R. W. & Vivian, A. ( 1999; ). A dispensable region of the chromosome which is associated with an avirulence gene in Pseudomonas syringae pv. pisi. Microbiology 145, 135-141.[CrossRef]
    [Google Scholar]
  5. Arnold, D. L., Jackson, R. W. & Vivian, A. ( 2000; ). Evidence for the mobility of an avirulence gene, avrPpiA1, between the chromosome and plasmids of races of Pseudomonas syringae pv. pisi. Mol Plant Pathol 1, 195-199.[CrossRef]
    [Google Scholar]
  6. Arnold, D. L., Gibbon, M. J., Jackson, R. W., Wood, J. R., Brown, J., Mansfield, J. W., Taylor, J. D. & Vivian, A. ( 2001a; ). Molecular characterization of avrPphD, a widely-distributed gene from Pseudomonas syringae pv. phaseolicola involved in non-host recognition by pea (Pisum sativum). Physiol Mol Plant Pathol 58, 55-62.[CrossRef]
    [Google Scholar]
  7. Arnold, D. L., Jackson, R. W., Fillingham, A. J., Goss, S. C., Taylor, J. D., Mansfield, J. W. & Vivian, A. (2001b). Highly conserved sequences flank avirulence genes: isolation of novel avirulence genes from Pseudomonas syringae pv. pisi. Microbiology147 (in press).
  8. Bavage, A. D., Vivian, A., Atherton, G. T., Taylor, J. D. & Malik, A. N. ( 1991; ). Molecular genetics of Pseudomonas syringae pv. pisi: plasmid involvement in cultivar-specific incompatibility. J Gen Microbiol 137, 2231-2239.[CrossRef]
    [Google Scholar]
  9. Bender, C. L. & Cooksey, D. A. ( 1986; ). Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance. J Bacteriol 165, 534-541.
    [Google Scholar]
  10. Bender, C. L. & Cooksey, D. A. ( 1987; ). Molecular cloning of copper resistance genes in Pseudomonas syringae pv. tomato. J Bacteriol 169, 470-474.
    [Google Scholar]
  11. Bender, C. L., Stone, H. E., Sims, J. J. & Cooksey, D. A. ( 1987; ). Reduced pathogen fitness of Pseudomonas syringae pv. tomato Tn5 mutants defective in coronatine production. Physiol Mol Plant Pathol 30, 273-283.[CrossRef]
    [Google Scholar]
  12. Bender, C. L., Malvick, D. K. & Mitchell, R. E. ( 1989; ). Plasmid-mediated production of the phytotoxin coronatine in Pseudomonas syringae pv. tomato. J Bacteriol 171, 807-812.
    [Google Scholar]
  13. Bender, C. L., Young, S. A. & Mitchell, R. E. ( 1991; ). Conservation of plasmid DNA sequences in coronatine-producing pathovars of Pseudomonas syringae. Appl Environ Microbiol 57, 993-999.
    [Google Scholar]
  14. Bender, C. L., Liyanage, H., Palmer, D., Ullrich, M., Young, S. & Mitchell, R. ( 1993; ). Characterization of the genes controlling the biosynthesis of the polyketide phytotoxin coronatine including conjugation between coronafacic and coronamic acid. Gene 133, 31-38.[CrossRef]
    [Google Scholar]
  15. Bender, C., Palmer, D., Peñaloza-Vázquez, A., Rangaswamy, V. & Ullrich, M. ( 1996; ). Biosynthesis of coronatine, a thermoregulated phytotoxin produced by the phytopathogen Pseudomonas syringae. Arch Microbiol 166, 71-75.[CrossRef]
    [Google Scholar]
  16. Bereswill, S., Pahl, A., Bellemann, P., Zeller, W. & Geider, K. ( 1992; ). Sensitive and species-specific detection of Erwinia amylovora by polymerase chain reaction analysis. Appl Environ Microbiol 58, 3522-3526.
    [Google Scholar]
  17. Bilic, M. & Delic, V. ( 1997; ). Isolation and characterization of a cryptic plasmid from Erwinia citreus ATCC 31623. J Appl Microbiol 83, 485-492.[CrossRef]
    [Google Scholar]
  18. Bogdanove, A. J., Beer, S. V., Bonas, U. & 8 other authors ( 1996; ). Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol Microbiol 20, 681–683.[CrossRef]
    [Google Scholar]
  19. Bonas, U., Stall, R. E. & Staskawicz, B. ( 1989; ). Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218, 127-136.[CrossRef]
    [Google Scholar]
  20. Bonas, U., Conrads-Strauch, J. & Balbo, I. ( 1993; ). Resistance in tomato to Xanthomonas campestris pv. vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3. Mol Gen Genet 238, 261-269.
    [Google Scholar]
  21. Boucher, C., Barberis, P., Trigalet, A. & Demery, D. ( 1985; ). Transposon mutagenesis of Pseudomonas solanacearum: isolation of Tn5-induced avirulent mutants. J Gen Microbiol 131, 2449-2457.
    [Google Scholar]
  22. Boucher, C., Martinel, A., Barberis, P., Alloing, G. & Zischek, C. ( 1986; ). Virulence genes are carried by a megaplasmid of the plant pathogen Pseudomonas solanacearum. Mol Gen Genet 205, 270-275.[CrossRef]
    [Google Scholar]
  23. Bukhari, A. I, Shapiro, J. A. & Adhya, S. L. (1977). DNA Insertion Elements, Plasmids and Episomes. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  24. Burr, T. J., Norelli, J. L., Katz, B., Wilcox, W. F. & Hoying, S. A. ( 1988; ). Streptomycin resistance of Pseudomonas syringae pv. papulans in apple orchards and its association with a conjugative plasmid. Phytopathology 78, 410-413.[CrossRef]
    [Google Scholar]
  25. Caponero, A., Contesini, A. M. & Iacobellis, N. S. ( 1995; ). Population diversity of Pseudomonas syringae subsp. savastanoi on olive and oleander. Plant Pathol 44, 848-855.[CrossRef]
    [Google Scholar]
  26. Chiou, C.-S. & Jones, A. L. ( 1993; ). Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J Bacteriol 175, 732-740.
    [Google Scholar]
  27. Clark, E., Manulis, S., Ophir, Y., Barash, I. & Gafni, Y. ( 1993; ). Cloning and characterization of iaaM and iaaH from Erwinia herbicola pathovar gypsophilae. Phytopathology 83, 234-240.[CrossRef]
    [Google Scholar]
  28. Comai, L. & Kosuge, T. ( 1980; ). Involvement of plasmid deoxyribonucleic acid in indoleacetic acid synthesis in Pseudomonas savastanoi. J Bacteriol 143, 950-957.
    [Google Scholar]
  29. Comai, L. & Kosuge, T. ( 1983; ). Transposable element that causes mutations in a plant pathogenic Pseudomonas sp. J Bacteriol 154, 1162-1167.
    [Google Scholar]
  30. Comai, L., Surico, G. & Kosuge, T. ( 1982; ). Relation of plasmid DNA to indoleacetic acid production in different strains of Pseudomonas syringae pv. savastanoi. J Gen Microbiol 128, 2157-2163.
    [Google Scholar]
  31. Cooksey, D. A. ( 1987; ). Characterization of a copper resistance plasmid conserved in copper-resistant strains of Pseudomonas syringae pv. tomato. Appl Environ Microbiol 53, 454-456.
    [Google Scholar]
  32. Coplin, D. L. ( 1989; ). Plasmids and their role in the evolution of plant pathogenic bacteria. Annu Rev Phytopathol 27, 187-212.[CrossRef]
    [Google Scholar]
  33. Coplin, D. L., Frederick, R. D. & McCammon, S. L. ( 1985; ). Characterization of a conjugative plasmid from Erwinia stewartii. J Gen Microbiol 131, 2985-2991.
    [Google Scholar]
  34. Cournoyer, B., Sharp, J. D., Astuto, A., Gibbon, M. J., Taylor, J. D. & Vivian, A. ( 1995; ). Molecular characterization of the Pseudomonas syringae pv. pisi plasmid-borne avirulence gene avrPpiB which matches the R3 resistance locus in pea. Mol Plant–Microbe Interact 8, 700-708.[CrossRef]
    [Google Scholar]
  35. Couturier, M., Bex, F., Berquist, P. L. & Maas, W. K. ( 1988; ). Identification and classification of bacterial plasmids. Microbiol Rev 52, 375-395.
    [Google Scholar]
  36. Cuppels, D. A. & Ainsworth, T. ( 1995; ). Molecular and physiological characterization of Pseudomonas syringae pv. tomato and Pseudomonas syringae pv. maculicola strains that produce the phytotoxin coronatine. Appl Environ Microbiol 61, 3530-3536.
    [Google Scholar]
  37. Dangl, J. L., Ritter, C., Gibbon, M. J., Mur, L. A. J., Wood, J. R., Goss, S., Mansfield, J., Taylor, J. D. & Vivian, A. ( 1992; ). Functional homologs of the Arabidopsis RPM1 disease resistance gene in bean and pea. Plant Cell 4, 1359-1369.[CrossRef]
    [Google Scholar]
  38. Datta, N. & Hughes, V. M. ( 1983; ). Plasmids of the same Inc groups in Enterobacteria before and after the medical use of antibiotics. Nature 306, 616-617.[CrossRef]
    [Google Scholar]
  39. De Feyter, R. & Gabriel, D. W. ( 1991; ). At least six avirulence genes are clustered on a 90-kilobase plasmid in Xanthomonas campestris pv. malvacearum. Mol Plant–Microbe Interact 4, 423-432.[CrossRef]
    [Google Scholar]
  40. Eisenstark, A. ( 1989; ). Bacterial genes involved in response to near-ultraviolet irradiation. Adv Genet 26, 99-147.
    [Google Scholar]
  41. Ezra, D., Barash, I., Valinsky, L. & Manulis, S. ( 2000; ). The dual function in virulence and host-range restriction of a gene isolated from the pPATH-Ehg plasmid of Erwinia herbicola pv. gysophilae. Mol Plant–Microbe Interact 13, 683-692.[CrossRef]
    [Google Scholar]
  42. Flor, H. ( 1971; ). Current status of the gene-for-gene concept. Annu Rev Phytopathol 9, 275-296.[CrossRef]
    [Google Scholar]
  43. Frederick, R. D. & Coplin, D. L. ( 1986; ). Plasmid pDC190: distribution among Erwinia stewartii strains and nonassociation with virulence. Phytopathology 76, 165-170.[CrossRef]
    [Google Scholar]
  44. Friedberg, E. C., Walker, G. C. & Siede, W. (1995). DNA Repair and Mutagenesis. Washington, DC: American Society for Microbiology.
  45. Fu, J.-F., Chang, H.-C., Chen, Y.-S. & Liu, S.-T. ( 1995; ). Sequence analysis of an Erwinia stewartii plasmid, pSW100. Plasmid 34, 75-84.[CrossRef]
    [Google Scholar]
  46. Fu, J.-F., Chang, H.-C., Chen, Y.-M., Chang, Y.-S. & Liu, S.-T. ( 1996; ). Characterization of the replicon of plasmid pSW500 of Erwinia stewartii. Mol Gen Genet 250, 699-704.
    [Google Scholar]
  47. Fu, J.-F., Ying, S.-W. & Liu, S.-T. ( 1997; ). Cloning and characterization of the ori region of pSW1200 of Erwinia stewartii: similarity with plasmid P1. Plasmid 38, 141-147.[CrossRef]
    [Google Scholar]
  48. Fu, J.-F., Hu, J.-M., Chang, Y.-S. & Liu, S.-T. ( 1998; ). Isolation and characterization of plasmid pSW200 from Erwinia stewartii. Plasmid 40, 100-112.[CrossRef]
    [Google Scholar]
  49. Fukuda, H., Ogawa, T., Ishihara, K., Fujii, T., Nagahama, K., Omata, T., Inoue, Y., Tanase, S. & Morino, Y. ( 1992; ). Molecular cloning in Escherichia coli, expression, and nucleotide sequence of the gene for the ethylene-forming enzyme of Pseudomonas syringae pv. phaseolicola PK2. Biochem Biophys Res Commun 188, 826-832.[CrossRef]
    [Google Scholar]
  50. Galan, J. E. & Collmer, A. ( 1999; ). Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 1322-1328.[CrossRef]
    [Google Scholar]
  51. Gardan, L., Shafik, H., Belouin, S., Broch, R., Grimont, F. & Grimont, P. A. D. ( 1999; ). DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int J Syst Bacteriol 49, 469-478.[CrossRef]
    [Google Scholar]
  52. Garg, R. P., Huang, J., Yindeeyoungyeon, W., Denny, T. P. & Schell, M. A. ( 2000; ). Multicomponent transcriptional regulation at the complex promoter of exopolysaccharide I biosynthetic operon of Ralstonia solanacearum. J Bacteriol 182, 6659-6666.[CrossRef]
    [Google Scholar]
  53. Gibbon, M. J., Jenner, C., Mur, L. A. J., Puri, N., Mansfield, J. W., Taylor, J. D. & Vivian, A. ( 1997; ). Avirulence gene avrPpiA from Pseudomonas syringe pv. pisi is not required for full virulence on pea. Physiol Mol Plant Pathol 50, 219-236.[CrossRef]
    [Google Scholar]
  54. Gibbon, M. J., Sesma, A., Canal, A., Wood, J. R., Hidalgo, E., Brown, J., Vivian, A. & Murillo, J. ( 1999; ). Replication regions from plant-pathogenic Pseudomonas syringae plasmids are similar to ColE2-related replicons. Microbiology 145, 325-334.[CrossRef]
    [Google Scholar]
  55. Glass, N. L. & Kosuge, T. ( 1986; ). Cloning of the gene for indoleacetic acid-lysine synthetase from Pseudomonas syringae subsp. savastanoi. J Bacteriol 166, 598-603.
    [Google Scholar]
  56. Glickmann, E., Gardan, L., Jacquet, S., Hussain, S., Elasri, M., Petit, A. & Dessaux, Y. ( 1998; ). Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol Plant–Microbe Interact 11, 156-162.[CrossRef]
    [Google Scholar]
  57. González, C. F., Layher, S. K., Vidaver, A. K. & Olsen, R. H. ( 1984; ). Transfer, mapping, and cloning of Pseudomonas syringae pv. syringae plasmid pCG131 and assessment of its role in virulence. Phytopathology 74, 1245-1250.[CrossRef]
    [Google Scholar]
  58. González, C. F., Pettit, E. A., Valadez, V. A. & Provin, E. M. ( 1997; ). Mobilization, cloning and sequence determination of a plasmid-encoded polygalacturonase from a phytopathogenic Burkholderia (Pseudomonas) cepacia. Mol Plant–Microbe Interact 10, 840-851.[CrossRef]
    [Google Scholar]
  59. González, A. I., Ruiz, M. L. & Polanco, C. ( 1998; ). A race-specific insertion of transposable element IS801 in Pseudomonas syringae pv. phaseolicola. Mol Plant–Microbe Interact 11, 423-428.[CrossRef]
    [Google Scholar]
  60. Goto, M. & Hyodo, H. ( 1987; ). Ethylene production by cell-free extracts of the kudzu strains of Pseudomonas syringae pv. phaseolicola. Plant Cell Physiol 28, 405-414.
    [Google Scholar]
  61. Hasebe, A. & Iida, S. ( 2000; ). The novel insertion sequences IS1417, IS1418, and IS1419 from Burkholderia glumae and their strain distribution. Plasmid 44, 44-53.[CrossRef]
    [Google Scholar]
  62. Hasebe, A., Tsushima, S. & Iida, S. ( 1998; ). Isolation and characterization of IS1416 from Pseudomonas glumae, a new member of the IS3 family. Plasmid 39, 196-204.[CrossRef]
    [Google Scholar]
  63. Hedges, R. W. ( 1974; ). R factors from Providence. J Gen Microbiol 81, 171-181.[CrossRef]
    [Google Scholar]
  64. Hinsch, M. & Staskawicz, B. ( 1996; ). Identification of a new Arabidopsis disease resistance locus, RPS4, and cloning of the corresponding avirulence gene, avrRps4, from Pseudomonas syringae pv. pisi. Mol Plant–Microbe Interact 9, 55-61.[CrossRef]
    [Google Scholar]
  65. Hiraga, S.-I., Sugiyama, T. & Itoh, T. ( 1994; ). Comparative analysis of the replicon regions of eleven ColE2-related plasmids. J Bacteriol 176, 7233-7243.
    [Google Scholar]
  66. Hirano, S. S. & Upper, C. D. ( 2000; ). Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae – a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64, 624-653.[CrossRef]
    [Google Scholar]
  67. Huang, T.-C. & Burr, T. J. ( 1999; ). Characterization of plasmids that encode streptomycin-resistance in bacterial epiphytes of apple. J Appl Microbiol 86, 741-751.[CrossRef]
    [Google Scholar]
  68. Hughes, V. M. & Datta, N. ( 1983; ). Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era. Nature 302, 725-726.[CrossRef]
    [Google Scholar]
  69. Jackson, R. W. (1997). Plasmids and virulence in Pseudomonas syringae pv. phaseolicola. PhD thesis, UWE-Bristol.
  70. Jackson, R. W., Athanassopoulos, E., Tsiamis, G. & 7 other authors ( 1999; ). Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. Proc Natl Acad Sci USA 96, 10875–10880.[CrossRef]
    [Google Scholar]
  71. Jackson, R. W., Mansfield, J. W., Arnold, D. L., Sesma, A., Paynter, C. D., Murillo, J., Taylor, J. D. & Vivian, A. ( 2000; ). Excision from tRNA genes of a large chromosomal region, carrying avrPphB, associated with race change in the bean pathogen, Pseudomonas syringae pv. phaseolicola. Mol Microbiol 38, 186-197.[CrossRef]
    [Google Scholar]
  72. Jacoby, G. A. ( 1977; ). Classification of plasmids in Pseudomonas aeruginosa. In Microbiology 1977 , pp. 119-126. Edited by D. Schlessinger. Washington, DC:American Society for Microbiology.
  73. Jenner, C., Hitchin, E., Mansfield, J., Walters, K., Betteridge, P., Teverson, D. & Taylor, J. ( 1991; ). Gene-for-gene interactions between Pseudomonas syringae pv. phaseolicola and Phaseolus. Mol Plant–Microbe Interact 4, 553-562.[CrossRef]
    [Google Scholar]
  74. Kado, C. I. ( 1998; ). Origin and evolution of plasmids. Antonie Leeuwenhoek 73, 117-126.[CrossRef]
    [Google Scholar]
  75. Kamiunten, H. ( 1995; ). Involvement of a plasmid in the expression of virulence in Pseudomonas syringae pv. eriobotryae. Ann Phytopathol Soc Jpn 61, 376-380.[CrossRef]
    [Google Scholar]
  76. Kamiunten, H. ( 1999; ). Isolation and characterization of virulence gene psvA on a plasmid of Pseudomonas syringae pv. eriobotryae. Ann Phytopathol Soc Jpn 65, 501-509.[CrossRef]
    [Google Scholar]
  77. Kearney, B. & Staskawicz, B. J. ( 1990; ). Characterization of IS476 and its role in bacterial spot disease of tomato and pepper. J Bacteriol 172, 143-148.
    [Google Scholar]
  78. Kidambi, S. P., Sundin, G. W., Palmer, D. A., Chakrabarty, A. M. & Bender, C. L. ( 1995; ). Copper as signal for alginate synthesis in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 61, 2172-2179.
    [Google Scholar]
  79. Kiewitz, C., Larbig, K., Klockgether, J., Weinel, C. & Tummler, B. ( 2000; ). Monitoring genome evolution ex vivo: reversible chromosomal integration of a 106 kb plasmid at two tRNALys gene loci in sequential Pseudomonas aeruginosa airway isolates. Microbiology 146, 2365-2373.
    [Google Scholar]
  80. Kobayashi, D. Y., Tamaki, S. J. & Keen, N. T. ( 1990; ). Molecular characterization of avirulence gene D from Pseudomonas syringae pv. tomato. Mol Plant–Microbe Interact 3, 94-102.[CrossRef]
    [Google Scholar]
  81. Kousik, C. S. & Ritchie, D. F. ( 1996; ). Race shift in Xanthomonas campestris pv. vesicatoria within a season in field-grown pepper. Phytopathology 86, 952-958.[CrossRef]
    [Google Scholar]
  82. Leary, J. V. & Trollinger, D. B. ( 1985; ). Identification of an indigenous plasmid carrying a gene for trimethoprim resistance in Pseudomonas syringae pv. glycinea. Mol Gen Genet 201, 485-486.[CrossRef]
    [Google Scholar]
  83. Lee, C. A. ( 1997; ). Type III secretion systems: machines to deliver bacterial proteins into eukaryotic cells? Trends Microbiol 5, 148-156.[CrossRef]
    [Google Scholar]
  84. Lee, Y.-A., Hendson, M., Panopoulos, N. J. & Schroth, M. N. ( 1994; ). Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. J Bacteriol 176, 173-188.
    [Google Scholar]
  85. Liang, L. Z., Sobiczewski, P., Paterson, J. M. & Jones, A. L. ( 1994; ). Variation in virulence, plasmid content, and genes for coronatine synthesis between Pseudomonas syringae pv. morsprunorum and P. s. syringae from Prunus. Plant Dis 78, 389-392.[CrossRef]
    [Google Scholar]
  86. Lichter, A., Barash, I., Valinsky, L. & Manulis, S. ( 1995a; ). The genes involved in cytokinin biosynthesis in Erwinia herbicola pv. gypsophilae: characterization and role in gall formation. J Bacteriol 177, 4457-4465.
    [Google Scholar]
  87. Lichter, A., Manulis, S., Sagee, O., Gafni, Y., Gray, J., Meilan, R., Morris, R. O. & Barash, I. ( 1995b; ). Production of cytokinins by Erwinia herbicola pv. gypsophilae and isolation of a locus conferring cytokinin biosynthesis. Mol Plant–Microbe Interact 8, 114-121.[CrossRef]
    [Google Scholar]
  88. Lichter, A., Manulis, S., Valinsky, L., Karniol, B. & Barash, I. ( 1996; ). IS1327, a new insertion-like element in the pathogenicity-associated plasmid of Erwinia herbicola pv. gypsophilae. Mol Plant–Microbe Interact 9, 98-104.[CrossRef]
    [Google Scholar]
  89. Lindgren, P. B. ( 1997; ). The role of hrp genes during plant-bacterial interactions. Annu Rev Phytopathol 35, 129-152.[CrossRef]
    [Google Scholar]
  90. Lindgren, P. B., Peet, R. C. & Panopoulos, N. J. ( 1986; ). Gene cluster of Pseudomonas syringae pv. ‘‘phaseolicola’’ controls pathogenicity of bean plants and hypersensitivity on nonhost plants. J Bacteriol 168, 512-522.
    [Google Scholar]
  91. Lorang, J. M., Shen, H., Kobayashi, D., Cooksey, D. & Keen, N. T. ( 1994; ). avrA and avrE in Pseudomonas syringae pv. tomato PT23 play a role in virulence on tomato plants. Mol Plant–Microbe Interact 7, 508-515.[CrossRef]
    [Google Scholar]
  92. MacDonald, E. M. S., Powell, G. K., Regier, D. A., Glass, N. L., Roberto, F., Kosuge, T. & Morris, R. O. ( 1986; ). Secretion of zeatin, ribosylzeatin, and ribosyl-1′-methylzeatin by Pseudomonas savastanoi. Plant Physiol 82, 742-747.[CrossRef]
    [Google Scholar]
  93. McGhee, G. C. & Jones, A. L. ( 2000; ). Complete nucleotide sequence of ubiquitous plasmid pEA29 from Erwinia amylovora strain Ea88: gene organization and intraspecies variation. Appl Environ Microbiol 66, 4897-4907.[CrossRef]
    [Google Scholar]
  94. Mahillon, J. & Chandler, M. ( 1998; ). Insertion sequences. Microbiol Mol Biol Rev 62, 725-774.
    [Google Scholar]
  95. Malik, A. N., Vivian, A. & Taylor, J. D. ( 1987; ). Isolation and partial characterization of three classes of mutant in Pseudomonas syringae pv. pisi with altered behaviour towards their host, Pisum sativum. J Gen Microbiol 133, 2393-2399.
    [Google Scholar]
  96. Manulis, S., Gafni, Y., Clark, E., Zutra, D., Ophir, Y. & Barash, I. ( 1991; ). Identification of a plasmid DNA probe for detection of strains of Erwinia herbicola pathogenic on Gypsophila paniculata. Phytopathology 81, 54-57.[CrossRef]
    [Google Scholar]
  97. Mazarei, M. & Kerr, A. ( 1991; ). Plasmids in Pseudomonas syringae pv. pisi carry genes for pathogenicity. Plant Pathol 40, 408-414.[CrossRef]
    [Google Scholar]
  98. Mellano, M. A. & Cooksey, D. A. ( 1988; ). Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. J Bacteriol 170, 2879-2883.
    [Google Scholar]
  99. Mendiola, M. V., Jubete, Y. & de la Cruz, F. ( 1992; ). DNA sequence of IS91 and identification of the transposase gene. J Bacteriol 174, 1345-1351.
    [Google Scholar]
  100. Mills, S. D., Jasalavich, C. A. & Cooksey, D. A. ( 1993; ). A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae. J Bacteriol 175, 1656-1664.
    [Google Scholar]
  101. Minsavage, G. V., Canteros, B. I. & Stall, R. E. ( 1990a; ). Plasmid-mediated resistance to streptomycin in Xanthomonas campestris pv. vesicatoria. Phytopathology 80, 719-723.[CrossRef]
    [Google Scholar]
  102. Minsavage, G. V., Dahlbeck, D., Whalen, M. C., Kearney, B., Bonas, U., Staskawicz, B. J. & Stall, R. E. ( 1990b; ). Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria-pepper interactions. Mol Plant–Microbe Interact 3, 41-47.[CrossRef]
    [Google Scholar]
  103. Mittal, S. M. & Davis, K. R. ( 1995; ). Role of the phytotoxin coronatine in the infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Mol Plant–Microbe Interact 8, 165-171.[CrossRef]
    [Google Scholar]
  104. Morales, V. M. & Sequeira, L. ( 1985; ). Indigenous plasmids in Pseudomonas solanacearum. Phytopathology 75, 767-771.[CrossRef]
    [Google Scholar]
  105. Mukhopadhyay, P., Mukhopadhyay, M. & Mills, D. ( 1990; ). Construction of a stable shuttle vector for high-frequency transformation in Pseudomonas syringae pv. syringae. J Bacteriol 172, 477-480.
    [Google Scholar]
  106. Murillo, J. & Keen, N. T. ( 1994; ). Two native plasmids of P. syringae pathovar tomato strain PT23 share a large amount of repeated DNA, including replication sequences. Mol Microbiol 12, 941-950.[CrossRef]
    [Google Scholar]
  107. Negishi, H., Yamada, T., Shiraishi, T., Oku, H. & Tanaka, H. ( 1993; ). Pseudomonas solanacearum: plasmid pJTPS1 mediates a shift from the pathogenic to nonpathogenic phenotype. Mol Plant–Microbe Interact 6, 203-209.[CrossRef]
    [Google Scholar]
  108. Niepold, F., Anderson, D. & Mills, D. ( 1985; ). Cloning determinants of pathogenesis from Pseudomonas syringae pathovar syringae. Proc Natl Acad Sci USA 82, 406-410.[CrossRef]
    [Google Scholar]
  109. Nieto, C., Fernández-Tresguerres, E., Sánchez, N., Vicente, M. & Dı́az, R. ( 1990; ). Cloning vectors, derived from a naturally occurring plasmid of Pseudomonas savastanoi, specifically tailored for manipulations in Pseudomonas. Gene 87, 145-149.[CrossRef]
    [Google Scholar]
  110. Nizan, R., Barash, I., Valinsky, L., Lichter, A. & Manulis, S. ( 1997; ). The presence of hrp genes on the pathogenicity-associated plasmid of the tumourigenic bacterium Erwinia herbicola pv. gypsophilae. Mol Plant–Microbe Interact 10, 677-682.[CrossRef]
    [Google Scholar]
  111. Nomura, N., Yamashita, M. & Murooka, Y. ( 1996; ). Genetic organization of a DNA-processing region required for mobilization of a non-self-transmissible plasmid, pEC3, isolated from Erwinia carotovora subsp. carotovora. Gene 170, 57-62.[CrossRef]
    [Google Scholar]
  112. Norelli, J. L., Burr, T. J., Lo Cicero, A. M., Gilbert, M. T. & Katz, B. H. ( 1991; ). Homologous streptomycin resistance gene present among diverse gram-negative bacteria in New York State apple orchards. Appl Environ Microbiol 57, 486-491.
    [Google Scholar]
  113. Obukowicz, M. & Shaw, P. D. ( 1983; ). Tn3 labeling of a cryptic plasmid found in the plant pathogenic bacterium Pseudomonas tabaci and mobilization of RSF1010 by donation. J Bacteriol 155, 438-442.
    [Google Scholar]
  114. Obukowicz, M. & Shaw, P. D. ( 1985; ). Construction of Tn3-containing plasmids from plant-pathogenic pseudomonads and an examination of their biological properties. Appl Environ Microbiol 49, 468-473.
    [Google Scholar]
  115. Palmer, D. A. & Bender, C. L. ( 1993; ). Effects of environmental and nutritional factors on production of the polyketide phytotoxin coronatine by Pseudomonas syringae pv. glycinea. Appl Environ Microbiol 59, 1619-1626.
    [Google Scholar]
  116. Palmer, E. L., Teviotdale, B. L. & Jones, A. L. ( 1997; ). A relative of the broad-host-range plasmid RSF1010 detected in Erwinia amylovora. Appl Environ Microbiol 63, 4604-4607.
    [Google Scholar]
  117. Patten, C. L. & Glick, B. R. ( 1996; ). Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42, 207-220.[CrossRef]
    [Google Scholar]
  118. Powell, G. K. & Morris, R. O. ( 1986; ). Nucleotide sequence and expression of a Pseudomonas savastanoi cytokinin biosynthetic gene: homology with Agrobacterium tumefaciens tmr and tzs loci. Nucleic Acids Res 14, 2555-2565.[CrossRef]
    [Google Scholar]
  119. Pujol, C. J. & Kado, C. I. ( 1998; ). Characterization of pUCD5000 involved in pink disease color formation by Pantoea citrea. Plasmid 40, 169-173.[CrossRef]
    [Google Scholar]
  120. Pujol, C. J. & Kado, C. I. ( 2000; ). Genetic and biochemical characterization of the pathway in Pantoea citrea leading to pink disease of pineapple. J Bacteriol 182, 2230-2237.[CrossRef]
    [Google Scholar]
  121. Quant, R. L. & Mills, D. ( 1984; ). An integrative plasmid and multiple-sized plasmids of Pseudomonas syringae pv. phaseolicola have extensive homology. Mol Gen Genet 193, 459-466.[CrossRef]
    [Google Scholar]
  122. Richberg, M. R., Aviv, D. H. & Dangl, J. L. ( 1998; ). Dead cells do tell tales. Curr Opin Plant Biol 1, 480-485.[CrossRef]
    [Google Scholar]
  123. Ritter, C. & Dangl, J. L. ( 1995; ). The avrRpm1 gene of Pseudomonas syringae pv. maculicola is required for virulence on Arabidopsis. Mol Plant–Microbe Interact 8, 444-453.[CrossRef]
    [Google Scholar]
  124. Roine, E., Wei, W., Yuan, J., Nurmiaho-Lassila, E.-L., Kalkkinen, N., Romantschuk, M. & He, S. Y. ( 1997; ). Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA 94, 3459-3464.[CrossRef]
    [Google Scholar]
  125. Romantschuk, M., Richter, G. Y., Mukhopadhyhay, P. & Mills, D. ( 1991; ). IS801, an insertion sequence element isolated from Pseudomonas syringae pathovar phaseolicola. Mol Microbiol 5, 617-622.[CrossRef]
    [Google Scholar]
  126. Sato, M., Nishiyama, K. & Shirata, A. ( 1983; ). Involvement of plasmid DNA in the productivity of coronatine by Pseudomonas syringae pv. atropurpurea. Ann Phytopathol Soc Jpn 49, 522-528.[CrossRef]
    [Google Scholar]
  127. Sato, M., Sato, Y., Kato, A., Nishiyama, K. & Sakai, F. ( 1989; ). Gene library of pCOR1, plasmid involved in coronatine biosynthesis in Pseudomonas syringae pv. atropurpurea. Ann Phytopathol Soc Jpn 55, 653-656.[CrossRef]
    [Google Scholar]
  128. Sato, M., Watanabe, K., Yazawa, M., Takikawa, Y. & Nishiyama, K. ( 1997; ). Detection of new ethylene-producing bacteria, Pseudomonas syringae pvs. cannabina and sesami, by PCR amplification of genes for the ethylene-forming enzyme. Phytopathology 87, 1192-1196.[CrossRef]
    [Google Scholar]
  129. Schnabel, E. L. & Jones, A. L. ( 1999; ). Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards. Appl Environ Microbiol 65, 4898-4907.
    [Google Scholar]
  130. Schumann, G. L. ( 1991; ). Pesticides. Plant Diseases: their Biology and Social Impact , 152-155. St Paul, MN:American Phytopathological Society.
  131. Sesma, A., Sundin, G. W. & Murillo, J. ( 1998; ). Closely related plasmid replicons coexisting in the phytopathogen Pseudomonas syringae show a mosaic organization of the replication region and altered incompatibility behavior. Appl Environ Microbiol 64, 3948-3953.
    [Google Scholar]
  132. Sesma, A., Sundin, G. W. & Murillo, J. ( 2000; ). Phylogeny of the replication regions of pPT23A-like plasmids from Pseudomonas syringae. Microbiology 146, 2375-2384.
    [Google Scholar]
  133. Sesma, A., Aizpun, M. T., Ortiz-Barredo, A., Arnold, D., Vivian, A. & Murillo, J. ( 2001; ). Virulence determinants other than coronatine in Pseudomonas syringae pv. tomato PT23 are plasmid-encoded. Physiol Mol Plant Pathol 58, 83-93.[CrossRef]
    [Google Scholar]
  134. Smidt, M. & Kosuge, T. ( 1978; ). The role of indole-3-acetic acid accumulation by alpha methyl tryptophan-resistant mutants of Pseudomonas savastanoi in gall formation on oleanders. Physiol Plant Pathol 13, 203-214.[CrossRef]
    [Google Scholar]
  135. Soby, S., Kirkpatrick, B. & Kosuge, T. ( 1993; ). Characterization of an insertion sequence (IS53) located within IS51 on the iaa-containing plasmid of Pseudomonas syringae pv. savastanoi. Plasmid 29, 135-141.[CrossRef]
    [Google Scholar]
  136. Soby, S., Kirkpatrick, B. & Kosuge, T. ( 1994; ). Characterization of high-frequency deletions in the iaa-containing plasmid, pIAA2, of Pseudomonas syringae pv. savastanoi. Plasmid 31, 21-30.[CrossRef]
    [Google Scholar]
  137. Sparks, R. B. & Lacy, G. H. ( 1980; ). Purification and characterization of cryptic plasmids pLS1 and pLS2 from Erwinia chrysanthemi. Phytopathology 70, 369-372.[CrossRef]
    [Google Scholar]
  138. Stall, R. E., Loschke, D. C. & Jones, J. B. ( 1986; ). Linkage of copper resistance and avirulence loci on a self-transmissible plasmid in Xanthomonas campestris pv. vesicatoria. Phytopathology 76, 240-243.[CrossRef]
    [Google Scholar]
  139. Steinberger, E. M., Cheng, G.-Y. & Beer, S. V. ( 1990; ). Characterization of a 56-kb plasmid of Erwinia amylovora Ea322: its noninvolvement in pathogenicity. Plasmid 24, 12-24.[CrossRef]
    [Google Scholar]
  140. Sundin, G. W. & Bender, C. L. ( 1993; ). Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl Environ Microbiol 59, 1018-1024.
    [Google Scholar]
  141. Sundin, G. W. & Bender, C. L. ( 1995; ). Expression of the strA-strB streptomycin resistance genes in Pseudomonas syringae and Xanthomonas campestris and characterization of IS6100 in X. campestris. Appl Environ Microbiol 61, 2891-2897.
    [Google Scholar]
  142. Sundin, G. W. & Bender, C. L. ( 1996; ). Molecular analysis of closely related copper- and streptomycin-resistance plasmids in Pseudomonas syringae pv. syringae. Plasmid 35, 98-107.[CrossRef]
    [Google Scholar]
  143. Sundin, G. W. & Murillo, J. ( 1999; ). Functional analysis of the Pseudomonas syringae rulAB determinant in tolerance to ultraviolet B (290–320 nm) radiation and distribution of rulAB among P. syringae pathovars. Environ Microbiol 1, 75-87.[CrossRef]
    [Google Scholar]
  144. Sundin, G. W., Demezas, D. H. & Bender, C. L. ( 1994; ). Genetic and plasmid diversity within natural populations of Pseudomonas syringae with various exposures to copper and streptomycin bactericides. Appl Environ Microbiol 60, 4421-4431.
    [Google Scholar]
  145. Sundin, G. W., Kidambi, S. P., Ullrich, M. & Bender, C. L. ( 1996; ). Resistance to ultraviolet light in Pseudomonas syringae: sequence and functional analysis of the plasmid-encoded rulAB genes. Gene 177, 77-81.[CrossRef]
    [Google Scholar]
  146. Swanson, J., Kearney, B., Dahlbeck, D. & Staskawicz, B. ( 1988; ). Cloned avirulence gene of Xanthomonas campestris pv. vesicatoria complements spontaneous race-change mutants. Mol Plant–Microbe Interact 1, 5-9.[CrossRef]
    [Google Scholar]
  147. Szabo, L. J. & Mills, D. ( 1984a; ). Integration and excision of pMC7105 in Pseudomonas syringae pv. phaseolicola: involvement of repetitive sequences. J Bacteriol 157, 821-827.
    [Google Scholar]
  148. Szabo, L. J. & Mills, D. ( 1984b; ). Characterization of eight excision plasmids of Pseudomonas syringae pv. phaseolicola. Mol Gen Genet 195, 90-95.[CrossRef]
    [Google Scholar]
  149. Taira, S., Tuimala, J., Roine, E., Eeva-Liisa, N.-L., Savilahti, H. & Romantschuk, M. ( 1999; ). Mutational analysis of the Pseudomonas syringae pv. tomato hrp gene encoding Hrp pilus subunit. Mol Microbiol 34, 736-744.
    [Google Scholar]
  150. Tamaki, S., Dahlbeck, D., Staskawicz, B. J. & Keen, N. T. ( 1988; ). Characterisation and expression of two avirulence genes cloned from Pseudomonas syringae pv. glycinea. J Bacteriol 170, 4846-4854.
    [Google Scholar]
  151. Taylor, J. D., Teverson, D. M., Allen, D. J. & Pastor-Corrales, M. A. ( 1996; ). Identification and origin of races of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areas. Plant Pathol 45, 469-478.[CrossRef]
    [Google Scholar]
  152. Tsiamis, G., Mansfield, J. W., Hockenhull, R. & 8 other authors ( 2000; ). Cultivar-specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv. phaseolicola, the cause of bean halo-blight disease. EMBO J 19, 3204–3214.[CrossRef]
    [Google Scholar]
  153. Ullrich, M. & Bender, C. L. ( 1994; ). The biosynthetic gene cluster for coronamic acid, an ethylcyclopropyl amino acid, contains genes homologous to amino acid-activating enzymes and thioesterases. J Bacteriol 176, 7574-7586.
    [Google Scholar]
  154. Vauterin, L., Hoste, B., Kersters, K. & Swings, J. ( 1995; ). Reclassification of Xanthomonas. Int J Syst Bacteriol 45, 472-489.[CrossRef]
    [Google Scholar]
  155. Vivian, A. & Arnold, D. L. ( 2000; ). Bacterial effector genes and their role in host–pathogen interactions. J Plant Pathol 82, 163-178.
    [Google Scholar]
  156. Vivian, A. & Gibbon, M. J. ( 1997; ). Avirulence genes in plant pathogenic bacteria: signals or weapons? Microbiology 143, 693-704.[CrossRef]
    [Google Scholar]
  157. Vivian, A., Gibbon, M. J. & Murillo, J. ( 1997; ). The molecular genetics of specificity determinants in plant pathogenic bacteria. In The Gene-for-Gene Relationship in Plant-Parasite Interactions , pp. 293-328. Edited by I. R. Crute, E. B. Holub & J. J. Burdon. Wallingford:CAB International.
  158. Voloudakis, A. E., Bender, C. L. & Cooksey, D. A. ( 1993; ). Similarity between copper resistance genes from Xanthomonas campestris and Pseudomonas syringae. Appl Environ Microbiol 59, 1627-1634.
    [Google Scholar]
  159. Watanabe, K., Nagahama, K. & Sato, M. ( 1998; ). A conjugative plasmid carrying the efe gene for the ethylene-forming enzyme isolated from Pseudomonas syringae pv. glycinea. Phytopathology 88, 1205-1209.[CrossRef]
    [Google Scholar]
  160. Wilson, E. E. ( 1935; ). The olive knot disease: its inception, development, and control. Hilgardia 9, 233-264.
    [Google Scholar]
  161. Wilson, M., Hirano, S. S. & Lindow, S. E. ( 1999; ). Location and survival of leaf-associated bacteria in relation to pathogenicity and potential for growth within the leaf. Appl Environ Microbiol 65, 1435-1443.
    [Google Scholar]
  162. Wood, J. R., Vivian, A., Jenner, C., Mansfield, J. W. & Taylor, J. D. ( 1994; ). Detection of a gene in pea controlling nonhost resistance to Pseudomonas syringae pv. phaseolicola. Mol Plant–Microbe Interact 7, 534-537.[CrossRef]
    [Google Scholar]
  163. Wu, L.-T. & Tseng, Y.-H. ( 2000; ). Characterization of the IncW cryptic plasmid pXV2 from Xanthomonas campestris pv. vesicatoria. Plasmid 44, 163-172.[CrossRef]
    [Google Scholar]
  164. Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H. & Nishiuchi, Y. ( 1995; ). Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969) comb. Nov. Microbiol Immunol 39, 897-904.[CrossRef]
    [Google Scholar]
  165. Yamada, T., Lee, P. D. & Kosuge, T. ( 1986; ). Insertion sequence elements of Pseudomonas savastanoi: nucleotide sequence and homology with Agrobacterium tumefaciens transfer DNA. Proc Natl Acad Sci USA 83, 8263-8267.[CrossRef]
    [Google Scholar]
  166. Yang, Y., De Feyter, R. & Gabriel, D. W. ( 1994; ). Host-specific symptoms and increased release of Xanthomonas citri and Xanthomonas campestris pv. malvacearum from leaves are determined by the 102-bp tandem repeats of pthA and avrb6, respectively. Mol Plant–Microbe Interact 7, 345-355.[CrossRef]
    [Google Scholar]
  167. Yang, Y., Yuan, Q. & Gabriel, D. W. ( 1996; ). Watersoaking function(s) of XcmH1005 are redundantly encoded by members of the Xanthomonas avr/pth gene family. Mol Plant–Microbe Interact 9, 105-113.[CrossRef]
    [Google Scholar]
  168. Young, J. M., Saddler, G. S., Takikawa, Y., De Boer, S. H., Vauterin, L., Gardan, L., Gvozdyak, R. I. & Stead, D. E. ( 1996; ). Names of plant pathogenic bacteria 1864–1995. Rev Plant Pathol 75, 721-763.
    [Google Scholar]
  169. Yucel, I., Boyd, C., Debnam, Q. & Keen, N. T. ( 1994a; ). Two different classes of avrD alleles occur in pathovars of Pseudomonas syringae. Mol Plant–Microbe Interact 7, 131-139.[CrossRef]
    [Google Scholar]
  170. Yucel, I., Slaymaker, D., Boyd, C., Murillo, J., Buzzell, R. I. & Keen, N. T. ( 1994b; ). Avirulence gene avrPphC from Pseudomonas syringae pv. phaseolicola 3121: a plasmid-borne homologue of avrC closely linked to an avrD allele. Mol Plant–Microbe Interact 7, 677-679.[CrossRef]
    [Google Scholar]
  171. Zhu, Y., Tamura, K., Watanabe, M., Matsuda, I. & Sato, M. ( 1995; ). Plasmid-mediated coronatine production in Pseudomonas syringae pv. maculicola. Ann Phytopathol Soc Jpn 61, 569-574.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-4-763
Loading
/content/journal/micro/10.1099/00221287-147-4-763
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error