1887
Preview this article:
Zoom in
Zoomout

The roles of plasmids in phytopathogenic bacteria: mobile arsenals?, Page 1 of 1

| /docserver/preview/fulltext/micro/147/4/1470763a-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-763
2001-04-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1470763a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-763&mimeType=html&fmt=ahah

References

  1. Alarcón-Chaidez F. J., Peñaloza-Vázquez A.. Ullrich M., Bender C. 1999; Characterization of plasmids encoding the phytotoxin coronatine in Pseudomonas syringae . Plasmid42:210–220[CrossRef]
    [Google Scholar]
  2. Alfano J. R., Collmer A. 1997; The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins and death. J Bacteriol179:5655–5662
    [Google Scholar]
  3. Anderson D. M., Fouts D. E., Collmer A., Schneewind O. 1999; Reciprocal secretion of proteins by bacterial type III machines of plant and animal pathogens suggests universal recognition of mRNA targeting signals. Proc Natl Acad Sci USA96:12839–12843[CrossRef]
    [Google Scholar]
  4. Arnold D. L., Brown J., Jackson R. W., Vivian A. 1999; A dispensable region of the chromosome which is associated with an avirulence gene in Pseudomonas syringae pv. pisi . Microbiology145:135–141[CrossRef]
    [Google Scholar]
  5. Arnold D. L., Jackson R. W., Vivian A. 2000; Evidence for the mobility of an avirulence gene, avrPpiA1 , between the chromosome and plasmids of races of Pseudomonas syringae pv. pisi . Mol Plant Pathol1:195–199[CrossRef]
    [Google Scholar]
  6. Arnold D. L., Gibbon M. J., Jackson R. W., Wood J. R., Brown J., Mansfield J. W., Taylor J. D., Vivian A. 2001a; Molecular characterization of avrPphD , a widely-distributed gene from Pseudomonas syringae pv. phaseolicola involved in non-host recognition by pea ( Pisum sativum . Physiol Mol Plant Pathol58:55–62[CrossRef]
    [Google Scholar]
  7. Arnold D. L., Jackson R. W., Fillingham A. J., Goss S. C., Taylor J. D., Mansfield J. W., Vivian A. 2001b; Highly conserved sequences flank avirulence genes: isolation of novel avirulence genes from Pseudomonas syringae pv.pisi . Microbiology147: in press
    [Google Scholar]
  8. Bavage A. D., Vivian A., Atherton G. T., Taylor J. D., Malik A. N. 1991; Molecular genetics of Pseudomonas syringae pv. pisi : plasmid involvement in cultivar-specific incompatibility. J Gen Microbiol137:2231–2239[CrossRef]
    [Google Scholar]
  9. Bender C. L., Cooksey D. A. 1986; Indigenous plasmids in Pseudomonas syringae pv. tomato : conjugative transfer and role in copper resistance. J Bacteriol165:534–541
    [Google Scholar]
  10. Bender C. L., Cooksey D. A. 1987; Molecular cloning of copper resistance genes in Pseudomonas syringae pv. tomato . J Bacteriol169:470–474
    [Google Scholar]
  11. Bender C. L., Stone H. E., Sims J. J., Cooksey D. A. 1987; Reduced pathogen fitness of Pseudomonas syringae pv. tomato Tn 5 mutants defective in coronatine production. Physiol Mol Plant Pathol30:273–283[CrossRef]
    [Google Scholar]
  12. Bender C. L., Malvick D. K., Mitchell R. E. 1989; Plasmid-mediated production of the phytotoxin coronatine in Pseudomonas syringae pv. tomato . J Bacteriol171:807–812
    [Google Scholar]
  13. Bender C. L., Young S. A., Mitchell R. E. 1991; Conservation of plasmid DNA sequences in coronatine-producing pathovars of Pseudomonas syringae . Appl Environ Microbiol57:993–999
    [Google Scholar]
  14. Bender C. L., Liyanage H., Palmer D., Ullrich M., Young S., Mitchell R. 1993; Characterization of the genes controlling the biosynthesis of the polyketide phytotoxin coronatine including conjugation between coronafacic and coronamic acid. Gene133:31–38[CrossRef]
    [Google Scholar]
  15. Bender C., Palmer D., Rangaswamy V., Ullrich M, Peñaloza-Vázquez A.. 1996; Biosynthesis of coronatine, a thermoregulated phytotoxin produced by the phytopathogen Pseudomonas syringae . Arch Microbiol166:71–75[CrossRef]
    [Google Scholar]
  16. Bereswill S., Pahl A., Bellemann P., Zeller W., Geider K. 1992; Sensitive and species-specific detection of Erwinia amylovora by polymerase chain reaction analysis. Appl Environ Microbiol58:3522–3526
    [Google Scholar]
  17. Bilic M., Delic V. 1997; Isolation and characterization of a cryptic plasmid from Erwinia citreus ATCC 31623. J Appl Microbiol83:485–492[CrossRef]
    [Google Scholar]
  18. Bogdanove A. J., Beer S. V., Bonas U.. 8 other authors 1996; Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. MolMicrobiol20:681–683[CrossRef]
    [Google Scholar]
  19. Bonas U., Stall R. E., Staskawicz B. 1989; Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria . Mol Gen Genet218:127–136[CrossRef]
    [Google Scholar]
  20. Bonas U., Conrads-Strauch J., Balbo I. 1993; Resistance in tomato to Xanthomonas campestris pv. vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3 . Mol Gen Genet238:261–269
    [Google Scholar]
  21. Boucher C., Barberis P., Trigalet A., Demery D. 1985; Transposon mutagenesis of Pseudomonas solanacearum : isolation of Tn5-induced avirulent mutants. J Gen Microbiol131:2449–2457
    [Google Scholar]
  22. Boucher C., Martinel A., Barberis P., Alloing G., Zischek C. 1986; Virulence genes are carried by a megaplasmid of the plant pathogen Pseudomonas solanacearum . Mol Gen Genet205:270–275[CrossRef]
    [Google Scholar]
  23. Bukhari A. I, Shapiro J. A., Adhya S. L. 1977; DNA Insertion Elements, Plasmids and Episomes Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Burr T. J., Norelli J. L., Katz B., Wilcox W. F., Hoying S. A. 1988; Streptomycin resistance of Pseudomonas syringae pv. papulans in apple orchards and its association with a conjugative plasmid. Phytopathology78:410–413[CrossRef]
    [Google Scholar]
  25. Caponero A., Contesini A. M., Iacobellis N. S. 1995; Population diversity of Pseudomonas syringae subsp. savastanoi on olive and oleander. Plant Pathol44:848–855[CrossRef]
    [Google Scholar]
  26. Chiou C.-S., Jones A. L. 1993; Nucleotide sequence analysis of a transposon (Tn 5393 ) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J Bacteriol175:732–740
    [Google Scholar]
  27. Clark E., Manulis S., Ophir Y., Barash I., Gafni Y. 1993; Cloning and characterization of iaaM and iaaH from Erwinia herbicola pathovar gypsophilae . Phytopathology83:234–240[CrossRef]
    [Google Scholar]
  28. Comai L., Kosuge T. 1980; Involvement of plasmid deoxyribonucleic acid in indoleacetic acid synthesis in Pseudomonas savastanoi . J Bacteriol143:950–957
    [Google Scholar]
  29. Comai L., Kosuge T. 1983; Transposable element that causes mutations in a plant pathogenic Pseudomonas sp. J Bacteriol154:1162–1167
    [Google Scholar]
  30. Comai L., Surico G., Kosuge T. 1982; Relation of plasmid DNA to indoleacetic acid production in different strains of Pseudomonas syringae pv. savastanoi . J Gen Microbiol128:2157–2163
    [Google Scholar]
  31. Cooksey D. A. 1987; Characterization of a copper resistance plasmid conserved in copper-resistant strains of Pseudomonas syringae pv. tomato . Appl Environ Microbiol53:454–456
    [Google Scholar]
  32. Coplin D. L. 1989; Plasmids and their role in the evolution of plant pathogenic bacteria. Annu Rev Phytopathol27:187–212[CrossRef]
    [Google Scholar]
  33. Coplin D. L., Frederick R. D., McCammon S. L. 1985; Characterization of a conjugative plasmid from Erwinia stewartii . J Gen Microbiol131:2985–2991
    [Google Scholar]
  34. Cournoyer B., Sharp J. D., Astuto A., Gibbon M. J., Taylor J. D., Vivian A. 1995; Molecular characterization of the Pseudomonas syringae pv. pisi plasmid-borne avirulence gene avrPpiB which matches the R3 resistance locus in pea. Mol Plant–Microbe Interact8:700–708[CrossRef]
    [Google Scholar]
  35. Couturier M., Bex F., Berquist P. L., Maas W. K. 1988; Identification and classification of bacterial plasmids. Microbiol Rev52:375–395
    [Google Scholar]
  36. Cuppels D. A., Ainsworth T. 1995; Molecular and physiological characterization of Pseudomonas syringae pv. tomato and Pseudomonas syringae pv. maculicola strains that produce the phytotoxin coronatine. Appl Environ Microbiol61:3530–3536
    [Google Scholar]
  37. Dangl J. L., Ritter C., Gibbon M. J., Mur L. A. J., Wood J. R., Goss S., Mansfield J., Taylor J. D., Vivian A. 1992; Functional homologs of the Arabidopsis RPM1 disease resistance gene in bean and pea. Plant Cell4:1359–1369[CrossRef]
    [Google Scholar]
  38. Datta N., Hughes V. M. 1983; Plasmids of the same Inc groups in Enterobacteria before and after the medical use of antibiotics. Nature306:616–617[CrossRef]
    [Google Scholar]
  39. De Feyter R., Gabriel D. W. 1991; At least six avirulence genes are clustered on a 90-kilobase plasmid in Xanthomonas campestris pv. malvacearum . Mol Plant–Microbe Interact4:423–432[CrossRef]
    [Google Scholar]
  40. Eisenstark A. 1989; Bacterial genes involved in response to near-ultraviolet irradiation. Adv Genet26:99–147
    [Google Scholar]
  41. Ezra D., Barash I., Valinsky L., Manulis S. 2000; The dual function in virulence and host-range restriction of a gene isolated from the pPATH-Ehg plasmid of Erwinia herbicola pv. gysophilae . Mol Plant–Microbe Interact13:683–692[CrossRef]
    [Google Scholar]
  42. Flor H. 1971; Current status of the gene-for-gene concept. Annu Rev Phytopathol9:275–296[CrossRef]
    [Google Scholar]
  43. Frederick R. D., Coplin D. L. 1986; Plasmid pDC190: distribution among Erwinia stewartii strains and nonassociation with virulence. Phytopathology76:165–170[CrossRef]
    [Google Scholar]
  44. Friedberg E. C., Walker G. C., Siede W. 1995; DNA Repair and Mutagenesis Washington, DC: American Society for Microbiology;
    [Google Scholar]
  45. Fu J.-F., Chang H.-C., Chen Y.-S., Liu S.-T. 1995; Sequence analysis of an Erwinia stewartii plasmid, pSW100. Plasmid34:75–84[CrossRef]
    [Google Scholar]
  46. Fu J.-F., Chang H.-C., Chen Y.-M., Chang Y.-S., Liu S.-T. 1996; Characterization of the replicon of plasmid pSW500 of Erwinia stewartii . Mol Gen Genet250:699–704
    [Google Scholar]
  47. Fu J.-F., Ying S.-W., Liu S.-T. 1997; Cloning and characterization of the ori region of pSW1200 of Erwinia stewartii : similarity with plasmid P1. Plasmid38:141–147[CrossRef]
    [Google Scholar]
  48. Fu J.-F., Hu J.-M., Chang Y.-S., Liu S.-T. 1998; Isolation and characterization of plasmid pSW200 from Erwinia stewartii . Plasmid40:100–112[CrossRef]
    [Google Scholar]
  49. Fukuda H., Ogawa T., Ishihara K., Fujii T., Nagahama K., Omata T., Inoue Y., Tanase S., Morino Y. 1992; Molecular cloning in Escherichia coli , expression, and nucleotide sequence of the gene for the ethylene-forming enzyme of Pseudomonas syringae pv. phaseolicola PK2. Biochem Biophys Res Commun188:826–832[CrossRef]
    [Google Scholar]
  50. Galan J. E., Collmer A. 1999; Type III secretion machines: bacterial devices for protein delivery into host cells. Science284:1322–1328[CrossRef]
    [Google Scholar]
  51. Gardan L., Shafik H., Belouin S., Broch R., Grimont F., Grimont P. A. D. 1999; DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp.nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int J Syst Bacteriol49:469–478[CrossRef]
    [Google Scholar]
  52. Garg R. P., Huang J., Yindeeyoungyeon W., Denny T. P., Schell M. A. 2000; Multicomponent transcriptional regulation at the complex promoter of exopolysaccharide I biosynthetic operon of Ralstonia solanacearum . J Bacteriol182:6659–6666[CrossRef]
    [Google Scholar]
  53. Gibbon M. J., Jenner C., Mur L. A. J., Puri N., Mansfield J. W., Taylor J. D., Vivian A. 1997; Avirulence gene avrPpiA from Pseudomonas syringe pv. pisi is not required for full virulence on pea. Physiol Mol Plant Pathol50:219–236[CrossRef]
    [Google Scholar]
  54. Gibbon M. J., Sesma A., Canal A., Wood J. R., Hidalgo E., Brown J., Vivian A., Murillo J. 1999; Replication regions from plant-pathogenic Pseudomonas syringae plasmids are similar to ColE2-related replicons. Microbiology145:325–334[CrossRef]
    [Google Scholar]
  55. Glass N. L., Kosuge T. 1986; Cloning of the gene for indoleacetic acid-lysine synthetase from Pseudomonas syringae subsp. savastanoi . J Bacteriol166:598–603
    [Google Scholar]
  56. Glickmann E., Gardan L., Jacquet S., Hussain S., Elasri M., Petit A., Dessaux Y. 1998; Auxin production is a common feature of most pathovars of Pseudomonas syringae . Mol Plant–Microbe Interact11:156–162[CrossRef]
    [Google Scholar]
  57. González C. F.. Layher S. K., Vidaver A. K., Olsen R. H. 1984; Transfer, mapping, and cloning of Pseudomonas syringae pv. syringae plasmid pCG131 and assessment of its role in virulence. Phytopathology74:1245–1250[CrossRef]
    [Google Scholar]
  58. González C. F.. Pettit E. A., Valadez V. A., Provin E. M. 1997; Mobilization, cloning and sequence determination of a plasmid-encoded polygalacturonase from a phytopathogenic Burkholderia ( Pseudomonas ) cepacia . Mol Plant–Microbe Interact10:840–851[CrossRef]
    [Google Scholar]
  59. González A. I.. Ruiz M. L., Polanco C. 1998; A race-specific insertion of transposable element IS 801 in Pseudomonas syringae pv. phaseolicola . Mol Plant–Microbe Interact11:423–428[CrossRef]
    [Google Scholar]
  60. Goto M., Hyodo H. 1987; Ethylene production by cell-free extracts of the kudzu strains of Pseudomonas syringae pv. phaseolicola . Plant Cell Physiol28:405–414
    [Google Scholar]
  61. Hasebe A., Iida S. 2000; The novel insertion sequences IS 1417 , IS 1418 , and IS 1419 from Burkholderia glumae and their strain distribution. Plasmid44:44–53[CrossRef]
    [Google Scholar]
  62. Hasebe A., Tsushima S., Iida S. 1998; Isolation and characterization of IS 1416 from Pseudomonas glumae , a new member of the IS 3 family. Plasmid39:196–204[CrossRef]
    [Google Scholar]
  63. Hedges R. W. 1974; R factors from Providence. J Gen Microbiol81:171–181[CrossRef]
    [Google Scholar]
  64. Hinsch M., Staskawicz B. 1996; Identification of a new Arabidopsis disease resistance locus, RPS4 , and cloning of the corresponding avirulence gene, avrRps4 , from Pseudomonas syringae pv. pisi . Mol Plant–Microbe Interact9:55–61[CrossRef]
    [Google Scholar]
  65. Hiraga S.-I., Sugiyama T., Itoh T. 1994; Comparative analysis of the replicon regions of eleven ColE2-related plasmids. J Bacteriol176:7233–7243
    [Google Scholar]
  66. Hirano S. S., Upper C. D. 2000; Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae – a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev64:624–653[CrossRef]
    [Google Scholar]
  67. Huang T.-C., Burr T. J. 1999; Characterization of plasmids that encode streptomycin-resistance in bacterial epiphytes of apple. J Appl Microbiol86:741–751[CrossRef]
    [Google Scholar]
  68. Hughes V. M., Datta N. 1983; Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era. Nature302:725–726[CrossRef]
    [Google Scholar]
  69. Jackson R. W. 1997; Plasmids and virulence in Pseudomonas syringae pv. phaseolicola PhD thesis UWE-Bristol;
    [Google Scholar]
  70. Jackson R. W., Athanassopoulos E., Tsiamis G.. 7 other authors 1999; Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. Proc Natl Acad SciUSA96:10875–10880[CrossRef]
    [Google Scholar]
  71. Jackson R. W., Mansfield J. W., Arnold D. L., Sesma A., Paynter C. D., Murillo J., Taylor J. D., Vivian A. 2000; Excision from tRNA genes of a large chromosomal region, carrying avrPphB , associated with race change in the bean pathogen, Pseudomonas syringae pv. phaseolicola . Mol Microbiol38:186–197[CrossRef]
    [Google Scholar]
  72. Jacoby G. A. 1977; Classification of plasmids in Pseudomonas aeruginosa . In Microbiology1977 pp119–126 Edited by Schlessinger D.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  73. Jenner C., Hitchin E., Mansfield J., Walters K., Betteridge P., Teverson D., Taylor J. 1991; Gene-for-gene interactions between Pseudomonas syringae pv. phaseolicola and Phaseolus. Mol Plant–Microbe Interact. 4553–562[CrossRef]
  74. Kado C. I. 1998; Origin and evolution of plasmids. Antonie Leeuwenhoek73:117–126[CrossRef]
    [Google Scholar]
  75. Kamiunten H. 1995; Involvement of a plasmid in the expression of virulence in Pseudomonas syringae pv. eriobotryae . Ann Phytopathol Soc Jpn61:376–380[CrossRef]
    [Google Scholar]
  76. Kamiunten H. 1999; Isolation and characterization of virulence gene psvA on a plasmid of Pseudomonas syringae pv. eriobotryae . Ann Phytopathol Soc Jpn65:501–509[CrossRef]
    [Google Scholar]
  77. Kearney B., Staskawicz B. J. 1990; Characterization of IS 476 and its role in bacterial spot disease of tomato and pepper. J Bacteriol172:143–148
    [Google Scholar]
  78. Kidambi S. P., Sundin G. W., Palmer D. A., Chakrabarty A. M., Bender C. L. 1995; Copper as signal for alginate synthesis in Pseudomonas syringae pv. syringae. Appl Environ Microbiol61:2172–2179
    [Google Scholar]
  79. Kiewitz C., Larbig K., Klockgether J., Weinel C., Tummler B. 2000; Monitoring genome evolution ex vivo : reversible chromosomal integration of a 106 kb plasmid at two tRNALys gene loci in sequential Pseudomonas aeruginosa airway isolates. Microbiology146:2365–2373
    [Google Scholar]
  80. Kobayashi D. Y., Tamaki S. J., Keen N. T. 1990; Molecular characterization of avirulence gene D from Pseudomonas syringae pv. tomato . Mol Plant–Microbe Interact3:94–102[CrossRef]
    [Google Scholar]
  81. Kousik C. S., Ritchie D. F. 1996; Race shift in Xanthomonas campestris pv. vesicatoria within a season in field-grown pepper. Phytopathology86:952–958[CrossRef]
    [Google Scholar]
  82. Leary J. V., Trollinger D. B. 1985; Identification of an indigenous plasmid carrying a gene for trimethoprim resistance in Pseudomonas syringae pv. glycinea . Mol Gen Genet201:485–486[CrossRef]
    [Google Scholar]
  83. Lee C. A. 1997; Type III secretion systems: machines to deliver bacterial proteins into eukaryotic cells?. Trends Microbiol5:148–156[CrossRef]
    [Google Scholar]
  84. Lee Y.-A., Hendson M., Panopoulos N. J., Schroth M. N. 1994; Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis : homology with small blue copper proteins and multicopper oxidase. J Bacteriol176:173–188
    [Google Scholar]
  85. Liang L. Z., Sobiczewski P., Paterson J. M., Jones A. L. 1994; Variation in virulence, plasmid content, and genes for coronatine synthesis between Pseudomonas syringae pv. morsprunorum and P. s. syringae from Prunus . Plant Dis78:389–392[CrossRef]
    [Google Scholar]
  86. Lichter A., Barash I., Valinsky L., Manulis S. 1995a; The genes involved in cytokinin biosynthesis in Erwinia herbicola pv. gypsophilae : characterization and role in gall formation. J Bacteriol177:4457–4465
    [Google Scholar]
  87. Lichter A., Manulis S., Sagee O., Gafni Y., Gray J., Meilan R., Morris R. O., Barash I. 1995b; Production of cytokinins by Erwinia herbicola pv. gypsophilae and isolation of a locus conferring cytokinin biosynthesis. Mol Plant–Microbe Interact8:114–121[CrossRef]
    [Google Scholar]
  88. Lichter A., Manulis S., Valinsky L., Karniol B., Barash I. 1996; IS 1327 , a new insertion-like element in the pathogenicity-associated plasmid of Erwinia herbicola pv. gypsophilae . Mol Plant–Microbe Interact9:98–104[CrossRef]
    [Google Scholar]
  89. Lindgren P. B. 1997; The role of hrp genes during plant-bacterial interactions. Annu Rev Phytopathol35:129–152[CrossRef]
    [Google Scholar]
  90. Lindgren P. B., Peet R. C., Panopoulos N. J. 1986; Gene cluster of Pseudomonas syringae pv. ‘‘ phaseolicola ’’ controls pathogenicity of bean plants and hypersensitivity on nonhost plants. J Bacteriol168:512–522
    [Google Scholar]
  91. Lorang J. M., Shen H., Kobayashi D., Cooksey D., Keen N. T. 1994; avrA and avrE in Pseudomonas syringae pv. tomato PT23 play a role in virulence on tomato plants. Mol Plant–Microbe Interact7:508–515[CrossRef]
    [Google Scholar]
  92. MacDonald E. M. S., Powell G. K., Regier D. A., Glass N. L., Roberto F., Kosuge T., Morris R. O. 1986; Secretion of zeatin, ribosylzeatin, and ribosyl-1′-methylzeatin by Pseudomonas savastanoi . Plant Physiol82:742–747[CrossRef]
    [Google Scholar]
  93. McGhee G. C., Jones A. L. 2000; Complete nucleotide sequence of ubiquitous plasmid pEA29 from Erwinia amylovora strain Ea88: gene organization and intraspecies variation. Appl Environ Microbiol66:4897–4907[CrossRef]
    [Google Scholar]
  94. Mahillon J., Chandler M. 1998; Insertion sequences. Microbiol Mol Biol Rev62:725–774
    [Google Scholar]
  95. Malik A. N., Vivian A., Taylor J. D. 1987; Isolation and partial characterization of three classes of mutant in Pseudomonas syringae pv. pisi with altered behaviour towards their host, Pisum sativum . J Gen Microbiol133:2393–2399
    [Google Scholar]
  96. Manulis S., Gafni Y., Clark E., Zutra D., Ophir Y., Barash I. 1991; Identification of a plasmid DNA probe for detection of strains of Erwinia herbicola pathogenic on Gypsophila paniculata . Phytopathology81:54–57[CrossRef]
    [Google Scholar]
  97. Mazarei M., Kerr A. 1991; Plasmids in Pseudomonas syringae pv. pisi carry genes for pathogenicity. Plant Pathol40:408–414[CrossRef]
    [Google Scholar]
  98. Mellano M. A., Cooksey D. A. 1988; Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato . J Bacteriol170:2879–2883
    [Google Scholar]
  99. Mendiola M. V., Jubete Y., de la Cruz F. 1992; DNA sequence of IS 91 and identification of the transposase gene. J Bacteriol174:1345–1351
    [Google Scholar]
  100. Mills S. D., Jasalavich C. A., Cooksey D. A. 1993; A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae . J Bacteriol175:1656–1664
    [Google Scholar]
  101. Minsavage G. V., Canteros B. I., Stall R. E. 1990a; Plasmid-mediated resistance to streptomycin in Xanthomonas campestris pv. vesicatoria . Phytopathology80:719–723[CrossRef]
    [Google Scholar]
  102. Minsavage G. V., Dahlbeck D., Whalen M. C., Kearney B., Bonas U., Staskawicz B. J., Stall R. E. 1990b; Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria -pepper interactions. Mol Plant–Microbe Interact3:41–47[CrossRef]
    [Google Scholar]
  103. Mittal S. M., Davis K. R. 1995; Role of the phytotoxin coronatine in the infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato . Mol Plant–Microbe Interact8:165–171[CrossRef]
    [Google Scholar]
  104. Morales V. M., Sequeira L. 1985; Indigenous plasmids in Pseudomonas solanacearum . Phytopathology75:767–771[CrossRef]
    [Google Scholar]
  105. Mukhopadhyay P., Mukhopadhyay M., Mills D. 1990; Construction of a stable shuttle vector for high-frequency transformation in Pseudomonas syringae pv. syringae . J Bacteriol172:477–480
    [Google Scholar]
  106. Murillo J., Keen N. T. 1994; Two native plasmids of P. syringae pathovar tomato strain PT23 share a large amount of repeated DNA, including replication sequences. Mol Microbiol12:941–950[CrossRef]
    [Google Scholar]
  107. Negishi H., Yamada T., Shiraishi T., Oku H., Tanaka H. 1993; Pseudomonas solanacearum : plasmid pJTPS1 mediates a shift from the pathogenic to nonpathogenic phenotype. Mol Plant–Microbe Interact6:203–209[CrossRef]
    [Google Scholar]
  108. Niepold F., Anderson D., Mills D. 1985; Cloning determinants of pathogenesis from Pseudomonas syringae pathovar syringae . Proc Natl Acad Sci USA82:406–410[CrossRef]
    [Google Scholar]
  109. Nieto C., Vicente M., Dı́az R, Fernández-Tresguerres E., Sánchez N.. 1990; Cloning vectors, derived from a naturally occurring plasmid of Pseudomonas savastanoi , specifically tailored for manipulations in Pseudomonas . Gene87:145–149[CrossRef]
    [Google Scholar]
  110. Nizan R., Barash I., Valinsky L., Lichter A., Manulis S. 1997; The presence of hrp genes on the pathogenicity-associated plasmid of the tumourigenic bacterium Erwinia herbicola pv. gypsophilae . Mol Plant–Microbe Interact10:677–682[CrossRef]
    [Google Scholar]
  111. Nomura N., Yamashita M., Murooka Y. 1996; Genetic organization of a DNA-processing region required for mobilization of a non-self-transmissible plasmid, pEC3, isolated from Erwinia carotovora subsp. carotovora . Gene170:57–62[CrossRef]
    [Google Scholar]
  112. Norelli J. L., Burr T. J., Lo Cicero A. M., Gilbert M. T., Katz B. H. 1991; Homologous streptomycin resistance gene present among diverse gram-negative bacteria in New York State apple orchards. Appl Environ Microbiol57:486–491
    [Google Scholar]
  113. Obukowicz M., Shaw P. D. 1983; Tn 3 labeling of a cryptic plasmid found in the plant pathogenic bacterium Pseudomonas tabaci and mobilization of RSF1010 by donation. J Bacteriol155:438–442
    [Google Scholar]
  114. Obukowicz M., Shaw P. D. 1985; Construction of Tn 3 -containing plasmids from plant-pathogenic pseudomonads and an examination of their biological properties. Appl Environ Microbiol49:468–473
    [Google Scholar]
  115. Palmer D. A., Bender C. L. 1993; Effects of environmental and nutritional factors on production of the polyketide phytotoxin coronatine by Pseudomonas syringae pv. glycinea. Appl Environ Microbiol59:1619–1626
    [Google Scholar]
  116. Palmer E. L., Teviotdale B. L., Jones A. L. 1997; A relative of the broad-host-range plasmid RSF1010 detected in Erwinia amylovora . Appl Environ Microbiol63:4604–4607
    [Google Scholar]
  117. Patten C. L., Glick B. R. 1996; Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol42:207–220[CrossRef]
    [Google Scholar]
  118. Powell G. K., Morris R. O. 1986; Nucleotide sequence and expression of a Pseudomonas savastanoi cytokinin biosynthetic gene: homology with Agrobacterium tumefaciens tmr and tzs loci. Nucleic Acids Res14:2555–2565[CrossRef]
    [Google Scholar]
  119. Pujol C. J., Kado C. I. 1998; Characterization of pUCD5000 involved in pink disease color formation by Pantoea citrea . Plasmid40:169–173[CrossRef]
    [Google Scholar]
  120. Pujol C. J., Kado C. I. 2000; Genetic and biochemical characterization of the pathway in Pantoea citrea leading to pink disease of pineapple. J Bacteriol182:2230–2237[CrossRef]
    [Google Scholar]
  121. Quant R. L., Mills D. 1984; An integrative plasmid and multiple-sized plasmids of Pseudomonas syringae pv. phaseolicola have extensive homology. Mol Gen Genet193:459–466[CrossRef]
    [Google Scholar]
  122. Richberg M. R., Aviv D. H., Dangl J. L. 1998; Dead cells do tell tales. Curr Opin Plant Biol1:480–485[CrossRef]
    [Google Scholar]
  123. Ritter C., Dangl J. L. 1995; The avrRpm1 gene of Pseudomonas syringae pv. maculicola is required for virulence on Arabidopsis. Mol Plant–Microbe Interact8:444–453[CrossRef]
    [Google Scholar]
  124. Roine E., Wei W., Yuan J., Nurmiaho-Lassila E.-L., Kalkkinen N., Romantschuk M., He S. Y. 1997; Hrp pilus: an hrp -dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci USA94:3459–3464[CrossRef]
    [Google Scholar]
  125. Romantschuk M., Richter G. Y., Mukhopadhyhay P., Mills D. 1991; IS 801 , an insertion sequence element isolated from Pseudomonas syringae pathovar phaseolicola . Mol Microbiol5:617–622[CrossRef]
    [Google Scholar]
  126. Sato M., Nishiyama K., Shirata A. 1983; Involvement of plasmid DNA in the productivity of coronatine by Pseudomonas syringae pv. atropurpurea . Ann Phytopathol Soc Jpn49:522–528[CrossRef]
    [Google Scholar]
  127. Sato M., Sato Y., Kato A., Nishiyama K., Sakai F. 1989; Gene library of pCOR1, plasmid involved in coronatine biosynthesis in Pseudomonas syringae pv. atropurpurea . Ann Phytopathol Soc Jpn55:653–656[CrossRef]
    [Google Scholar]
  128. Sato M., Watanabe K., Yazawa M., Takikawa Y., Nishiyama K. 1997; Detection of new ethylene-producing bacteria, Pseudomonas syringae pvs. cannabina and sesami , by PCR amplification of genes for the ethylene-forming enzyme. Phytopathology87:1192–1196[CrossRef]
    [Google Scholar]
  129. Schnabel E. L., Jones A. L. 1999; Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards. Appl Environ Microbiol65:4898–4907
    [Google Scholar]
  130. Schumann G. L. 1991; Pesticides. Plant Diseases: their Biology and Social Impact152–155 St Paul, MN: American Phytopathological Society;
    [Google Scholar]
  131. Sesma A., Sundin G. W., Murillo J. 1998; Closely related plasmid replicons coexisting in the phytopathogen Pseudomonas syringae show a mosaic organization of the replication region and altered incompatibility behavior. Appl Environ Microbiol64:3948–3953
    [Google Scholar]
  132. Sesma A., Sundin G. W., Murillo J. 2000; Phylogeny of the replication regions of pPT23A-like plasmids from Pseudomonas syringae . Microbiology146:2375–2384
    [Google Scholar]
  133. Sesma A., Aizpun M. T., Ortiz-Barredo A., Arnold D., Vivian A., Murillo J. 2001; Virulence determinants other than coronatine in Pseudomonas syringae pv. tomato PT23 are plasmid-encoded. Physiol Mol Plant Pathol58:83–93[CrossRef]
    [Google Scholar]
  134. Smidt M., Kosuge T. 1978; The role of indole-3-acetic acid accumulation by alpha methyl tryptophan-resistant mutants of Pseudomonas savastanoi in gall formation on oleanders. Physiol Plant Pathol13:203–214[CrossRef]
    [Google Scholar]
  135. Soby S., Kirkpatrick B., Kosuge T. 1993; Characterization of an insertion sequence (IS 53 ) located within IS 51 on the iaa -containing plasmid of Pseudomonas syringae pv. savastanoi Plasmid29:135–141[CrossRef]
    [Google Scholar]
  136. Soby S., Kirkpatrick B., Kosuge T. 1994; Characterization of high-frequency deletions in the iaa -containing plasmid, pIAA2, of Pseudomonas syringae pv. savastanoi . Plasmid31:21–30[CrossRef]
    [Google Scholar]
  137. Sparks R. B., Lacy G. H. 1980; Purification and characterization of cryptic plasmids pLS1 and pLS2 from Erwinia chrysanthemi . Phytopathology70:369–372[CrossRef]
    [Google Scholar]
  138. Stall R. E., Loschke D. C., Jones J. B. 1986; Linkage of copper resistance and avirulence loci on a self-transmissible plasmid in Xanthomonas campestris pv. vesicatoria . Phytopathology76:240–243[CrossRef]
    [Google Scholar]
  139. Steinberger E. M., Cheng G.-Y., Beer S. V. 1990; Characterization of a 56-kb plasmid of Erwinia amylovora Ea322: its noninvolvement in pathogenicity. Plasmid24:12–24[CrossRef]
    [Google Scholar]
  140. Sundin G. W., Bender C. L. 1993; Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl Environ Microbiol59:1018–1024
    [Google Scholar]
  141. Sundin G. W., Bender C. L. 1995; Expression of the strA-strB streptomycin resistance genes in Pseudomonas syringae and Xanthomonas campestris and characterization of IS 6100 in X. campestris . Appl Environ Microbiol61:2891–2897
    [Google Scholar]
  142. Sundin G. W., Bender C. L. 1996; Molecular analysis of closely related copper- and streptomycin-resistance plasmids in Pseudomonas syringae pv. syringae . Plasmid35:98–107[CrossRef]
    [Google Scholar]
  143. Sundin G. W., Murillo J. 1999; Functional analysis of the Pseudomonas syringae rulAB determinant in tolerance to ultraviolet B (290–320 nm) radiation and distribution of rulAB among P. syringae pathovars. Environ Microbiol1:75–87[CrossRef]
    [Google Scholar]
  144. Sundin G. W., Demezas D. H., Bender C. L. 1994; Genetic and plasmid diversity within natural populations of Pseudomonas syringae with various exposures to copper and streptomycin bactericides. Appl Environ Microbiol60:4421–4431
    [Google Scholar]
  145. Sundin G. W., Kidambi S. P., Ullrich M., Bender C. L. 1996; Resistance to ultraviolet light in Pseudomonas syringae : sequence and functional analysis of the plasmid-encoded rulAB genes. Gene177:77–81[CrossRef]
    [Google Scholar]
  146. Swanson J., Kearney B., Dahlbeck D., Staskawicz B. 1988; Cloned avirulence gene of Xanthomonas campestris pv. vesicatoria complements spontaneous race-change mutants. Mol Plant–Microbe Interact1:5–9[CrossRef]
    [Google Scholar]
  147. Szabo L. J., Mills D. 1984a; Integration and excision of pMC7105 in Pseudomonas syringae pv. phaseolicola : involvement of repetitive sequences. J Bacteriol157:821–827
    [Google Scholar]
  148. Szabo L. J., Mills D. 1984b; Characterization of eight excision plasmids of Pseudomonas syringae pv. phaseolicola . Mol Gen Genet195:90–95[CrossRef]
    [Google Scholar]
  149. Taira S., Tuimala J., Roine E., Eeva-Liisa N.-L., Savilahti H., Romantschuk M. 1999; Mutational analysis of the Pseudomonas syringae pv. tomato hrp gene encoding Hrp pilus subunit. Mol Microbiol34:736–744
    [Google Scholar]
  150. Tamaki S., Dahlbeck D., Staskawicz B. J., Keen N. T. 1988; Characterisation and expression of two avirulence genes cloned from Pseudomonas syringae pv. glycinea . J Bacteriol170:4846–4854
    [Google Scholar]
  151. Taylor J. D., Teverson D. M., Allen D. J., Pastor-Corrales M. A. 1996; Identification and origin of races of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areas. Plant Pathol45:469–478[CrossRef]
    [Google Scholar]
  152. Tsiamis G., Mansfield J. W., Hockenhull R.. 8 other authors 2000; Cultivar-specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv. phaseolicola , the cause of bean halo-blight disease. EMBOJ19:3204–3214[CrossRef]
    [Google Scholar]
  153. Ullrich M., Bender C. L. 1994; The biosynthetic gene cluster for coronamic acid, an ethylcyclopropyl amino acid, contains genes homologous to amino acid-activating enzymes and thioesterases. J Bacteriol176:7574–7586
    [Google Scholar]
  154. Vauterin L., Hoste B., Kersters K., Swings J. 1995; Reclassification of Xanthomonas . Int J Syst Bacteriol45:472–489[CrossRef]
    [Google Scholar]
  155. Vivian A., Arnold D. L. 2000; Bacterial effector genes and their role in host–pathogen interactions. J Plant Pathol82:163–178
    [Google Scholar]
  156. Vivian A., Gibbon M. J. 1997; Avirulence genes in plant pathogenic bacteria: signals or weapons?. Microbiology143:693–704[CrossRef]
    [Google Scholar]
  157. Vivian A., Gibbon M. J., Murillo J. 1997; The molecular genetics of specificity determinants in plant pathogenic bacteria. In The Gene-for-Gene Relationship in Plant-Parasite Interactions pp293–328 Edited by Crute I. R., Holub E. B., Burdon J. J.. Wallingford: CAB International;
    [Google Scholar]
  158. Voloudakis A. E., Bender C. L., Cooksey D. A. 1993; Similarity between copper resistance genes from Xanthomonas campestris and Pseudomonas syringae . Appl Environ Microbiol59:1627–1634
    [Google Scholar]
  159. Watanabe K., Nagahama K., Sato M. 1998; A conjugative plasmid carrying the efe gene for the ethylene-forming enzyme isolated from Pseudomonas syringae pv. glycinea . Phytopathology88:1205–1209[CrossRef]
    [Google Scholar]
  160. Wilson E. E. 1935; The olive knot disease: its inception, development, and control. Hilgardia9:233–264
    [Google Scholar]
  161. Wilson M., Hirano S. S., Lindow S. E. 1999; Location and survival of leaf-associated bacteria in relation to pathogenicity and potential for growth within the leaf. Appl Environ Microbiol65:1435–1443
    [Google Scholar]
  162. Wood J. R., Vivian A., Jenner C., Mansfield J. W., Taylor J. D. 1994; Detection of a gene in pea controlling nonhost resistance to Pseudomonas syringae pv. phaseolicola . Mol Plant–Microbe Interact7:534–537[CrossRef]
    [Google Scholar]
  163. Wu L.-T., Tseng Y.-H. 2000; Characterization of the IncW cryptic plasmid pXV2 from Xanthomonas campestris pv. vesicatoria. Plasmid44:163–172[CrossRef]
    [Google Scholar]
  164. Yabuuchi E., Kosako Y., Yano I., Hotta H., Nishiuchi Y. 1995; Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969) comb. Nov. Microbiol Immunol39:897–904[CrossRef]
    [Google Scholar]
  165. Yamada T., Lee P. D., Kosuge T. 1986; Insertion sequence elements of Pseudomonas savastanoi : nucleotide sequence and homology with Agrobacterium tumefaciens transfer DNA. Proc Natl Acad Sci USA83:8263–8267[CrossRef]
    [Google Scholar]
  166. Yang Y., De Feyter R., Gabriel D. W. 1994; Host-specific symptoms and increased release of Xanthomonas citri and Xanthomonas campestris pv. malvacearum from leaves are determined by the 102-bp tandem repeats of pthA and avrb6 , respectively. Mol Plant–Microbe Interact7:345–355[CrossRef]
    [Google Scholar]
  167. Yang Y., Yuan Q., Gabriel D. W. 1996; Watersoaking function(s) of XcmH1005 are redundantly encoded by members of the Xanthomonas avr / pth gene family. Mol Plant–Microbe Interact9:105–113[CrossRef]
    [Google Scholar]
  168. Young J. M., Saddler G. S., Takikawa Y., De Boer S. H., Vauterin L., Gardan L., Gvozdyak R. I., Stead D. E. 1996; Names of plant pathogenic bacteria 1864–1995. Rev Plant Pathol75:721–763
    [Google Scholar]
  169. Yucel I., Boyd C., Debnam Q., Keen N. T. 1994a; Two different classes of avrD alleles occur in pathovars of Pseudomonas syringae . Mol Plant–Microbe Interact7:131–139[CrossRef]
    [Google Scholar]
  170. Yucel I., Slaymaker D., Boyd C., Murillo J., Buzzell R. I., Keen N. T. 1994b; Avirulence gene avrPphC from Pseudomonas syringae pv. phaseolicola 3121: a plasmid-borne homologue of avrC closely linked to an avrD allele. Mol Plant–Microbe Interact7:677–679[CrossRef]
    [Google Scholar]
  171. Zhu Y., Tamura K., Watanabe M., Matsuda I., Sato M. 1995; Plasmid-mediated coronatine production in Pseudomonas syringae pv. maculicola . Ann Phytopathol Soc Jpn61:569–574[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-4-763
Loading
/content/journal/micro/10.1099/00221287-147-4-763
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error