1887

Abstract

After treating cells with the nonionic detergent Triton X-100, an undefined, structured protein complex remains that is called the ‘Triton X-100 insoluble fraction’ or ‘Triton shell’. By analogy with eukaryotic cells and supported by ultrastructural analyses it is supposed that this fraction contains the components of a bacterial cytoskeleton-like structure. In this study, the composition of the Triton X-100 insoluble fraction was defined by electron microscopic screening for possible structural elements, and by two-dimensional (2-D) gel electrophoresis and MS to identify the proteins present. Silver staining of 2-D gels revealed about 100 protein spots. By staining with colloidal Coomassie blue, about 50 protein spots were visualized, of which 41 were identified by determining the mass and partial sequence of tryptic peptides of individual proteins. The identified proteins belonged to several functional categories, mainly energy metabolism, translation and heat-shock response. In addition, lipoproteins were found and most of the proteins involved in cytadherence that were previously shown to be components of the Triton X-100 insoluble fraction. There were also 11 functionally unassigned proteins. Based on sequence-derived predictions, some of these might be potential candidates for structural components. Quantitatively, the most prevalent proteins were the heat-shock protein DnaK, elongation factor Tu and subunits α and β of the pyruvate dehydrogenase complex (PdhA, PdhB), but definite conclusions regarding the composition of the observed structures can only be drawn after specific proteins are assigned to them, for example by immunocytochemistry.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-4-1045
2001-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/4/1471045a.html?itemId=/content/journal/micro/10.1099/00221287-147-4-1045&mimeType=html&fmt=ahah

References

  1. Beck B. D., Arscott P. G., Jacobson A. 1978; Novel properties of bacterial elongation factor Tu. Proc Natl Acad Sci USA 75:1250–1254 [CrossRef]
    [Google Scholar]
  2. Biberfeld G., Biberfeld P. 1970; Ultrastructural features of Mycoplasma pneumoniae . J Bacteriol 102:855–861
    [Google Scholar]
  3. Blum H., Beiers H., Gross H. J. 1987; Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99 [CrossRef]
    [Google Scholar]
  4. Dallo S. F., Chavoya A., Baseman J. B. 1990; Characterization of the gene for a 30-kilodalton adhesion-related protein of Mycoplasma pneumoniae . Infect Immun 58:4163–4165
    [Google Scholar]
  5. Dandekar T., Huynen M., Regula J. T. 10 other authors 2000; Re-annotating the Mycoplasma pneumoniae genome sequence: adding value, function and reading frames. Nucleic Acids Res 28:3278–3288 [CrossRef]
    [Google Scholar]
  6. Dirksen L. B., Proft T., Hilbert H., Plagens H., Herrmann R., Krause D. C. 1996; Sequence analysis and characterization of the hmw gene cluster of Mycoplasma pneumoniae . Gene 171:19–25 [CrossRef]
    [Google Scholar]
  7. Eng J. K., McCormack A. L., Yates J. R. I. 1994; An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989 [CrossRef]
    [Google Scholar]
  8. Fountoulakis M., Langen H, Takács B. 1998; Two-dimensional map of basic proteins of Haemophilus influenzae . Electrophoresis 19:761–766 [CrossRef]
    [Google Scholar]
  9. Göbel U. Speth V., Bredt W. 1981; Filamentous structures in adherent Mycoplasma pneumoniae cells treated with nonionic detergents. J Cell Biol 91:537–543 [CrossRef]
    [Google Scholar]
  10. Görg A. Postel W., Günther S. 1988; The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 9:531–546 [CrossRef]
    [Google Scholar]
  11. Görg A. Obermaier C., Boguth G., Csordas A., Diaz J. J., Madjar J. J. 1997; Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins. Electrophoresis 18:328–337 [CrossRef]
    [Google Scholar]
  12. Görg A. Boguth G., Obermaier C., Weiss W. 1998; Two-dimensional electrophoresis of proteins in an immobilized pH 4–12 gradient. Electrophoresis 19:1516–1519 [CrossRef]
    [Google Scholar]
  13. Görg A. Obermaier C., Boguth G., Weiss W. 1999; Recent developments in two-dimensional gel electrophoresis with immobilized pH gradients: wide gradients up to pH 12, longer separation distances and simplified procedures. Electrophoresis 20:712–717 [CrossRef]
    [Google Scholar]
  14. Griffiths G., McDowall A. F., Back R., Dubochet J. 1984; On the preparation of cryosections for immunocytochemistry. J Ultrastruct Res 89:65–78 [CrossRef]
    [Google Scholar]
  15. Herrmann H., Wiche G. 1983; Specific in situ phosphorylation of plectin in detergent-resistant cytoskeletons from cultured Chinese hamster ovary cells. J Biol Chem 258:14610–14618
    [Google Scholar]
  16. Herrmann R., Reiner B. 1998; Mycoplasma pneumoniae and Mycoplasma genitalium : a comparison of two closely related bacterial species. Curr Opin Microbiol 1:572–579 [CrossRef]
    [Google Scholar]
  17. Himmelreich R., Hilbert H., Plagens H., Pirkl E., Li B. C., Herrmann R. 1996; Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae . Nucleic Acids Res 24:4420–4449 [CrossRef]
    [Google Scholar]
  18. Himmelreich R., Plagens H., Hilbert H., Reiner B., Herrmann R. 1997; Comparative analysis of the genomes of the bacteria Mycoplasma pneumoniae and Mycoplasma genitalium . Nucleic Acids Res 25:701–712 [CrossRef]
    [Google Scholar]
  19. Hu P. C., Collier A. M., Baseman J. B. 1977; Surface parasitism by Mycoplasma pneumoniae of respiratory epithelium. J Exp Med 145:1328–1343 [CrossRef]
    [Google Scholar]
  20. Inamine J. M., Loechel S., Hu P. C. 1988; Analysis of the nucleotide sequence of the P1 operon of Mycoplasma pneumoniae . Gene 73:175–183 [CrossRef]
    [Google Scholar]
  21. Kahane I., Tucker S., Leith D. K., Morrison Plummer J., Baseman J. B. 1985; Detection of the major adhesin P1 in triton shells of virulent Mycoplasma pneumoniae . Infect Immun 50:944–946
    [Google Scholar]
  22. Krause D. C. 1996; Mycoplasma pneumoniae cytadherence: unravelling the tie that binds. Mol Microbiol 20:247–253 [CrossRef]
    [Google Scholar]
  23. Krause D. C., Leith D. K., Wilson R. M., Baseman J. B. 1982; Identification of Mycoplasma pneumoniae proteins associated with hemadsorption and virulence. Infect Immun 35:809–817
    [Google Scholar]
  24. Krause D. C., Proft T., Hedreyda C. T., Hilbert H., Plagens H., Herrmann R. 1997; Transposon mutagenesis reinforces the correlation between Mycoplasma pneumoniae cytoskeletal protein HMW2 and cytadherence. J Bacteriol 179:2668–2677
    [Google Scholar]
  25. Layh-Schmitt G., Harkenthal M. 1999; The 40- and 90-kDa membrane proteins (ORF6 gene product) of Mycoplasma pneumoniae are responsible for the tip structure formation and P1 (adhesin) association with the Triton shell. FEMS Microbiol Lett 174:143–149 [CrossRef]
    [Google Scholar]
  26. Layh-Schmitt G., Herrmann R. 1994; Spatial arrangement of gene products of the P1 operon in the membrane of Mycoplasma pneumoniae . Infect Immun 62:974–979
    [Google Scholar]
  27. Layh-Schmitt G., Hilbert H., Pirkl E. 1995; A spontaneous hemadsorption-negative mutant of Mycoplasma pneumoniae exhibits a truncated adhesin-related 30-kilodalton protein and lacks the cytadherence-accessory protein HMW1. J Bacteriol 177:843–846
    [Google Scholar]
  28. Layh-Schmitt G., Podtelejnikov A., Mann M. 2000; Proteins complexed to the P1 adhesin of Mycoplasma pneumoniae . Microbiology 146:741–747
    [Google Scholar]
  29. Lupas A. 1996; Coiled coils: new structures and new functions. Trends Biochem Sci 21:375–382 [CrossRef]
    [Google Scholar]
  30. Meng K. E., Pfister R. M. 1980; Intracellular structures of Mycoplasma pneumoniae revealed after membrane removal. J Bacteriol 144:390–399
    [Google Scholar]
  31. Neimark H. C. 1977; Extraction of an actin-like protein from the prokaryote Mycoplasma pneumoniae . Proc Natl Acad Sci USA 74:4041–4045 [CrossRef]
    [Google Scholar]
  32. Norris V., Turnock G., Sigee D. 1996; The Escherichia coli enzoskeleton. Mol Microbiol 19:197–204 [CrossRef]
    [Google Scholar]
  33. Ogle K. F., Lee K. K., Krause D. C. 1991; Cloning and analysis of the gene encoding the cytadherence phase-variable protein HMW3 from Mycoplasma pneumoniae . Gene 97:69–75 [CrossRef]
    [Google Scholar]
  34. Pollack J. D., Williams M. V., McElhaney R. N. 1997; The comparative metabolism of the mollicutes (Mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells. Crit Rev Microbiol 23:269–354 [CrossRef]
    [Google Scholar]
  35. Proft T., Herrmann R. 1994; Identification and characterization of hitherto unknown Mycoplasma pneumoniae proteins. Mol Microbiol 13:337–348 [CrossRef]
    [Google Scholar]
  36. Proft T., Hilbert H., Layh-Schmitt G., Herrmann R. 1995; The proline-rich P65 protein of Mycoplasma pneumoniae is a component of the Triton X-100-insoluble fraction and exhibits size polymorphism in the strains M129 and FH. J Bacteriol 177:3370–3378
    [Google Scholar]
  37. Proft T., Hilbert H., Plagens H., Herrmann R. 1996; The P200 protein of Mycoplasma pneumoniae shows common features with the cytadherence-associated proteins HMW1 and HMW3. Gene 171:79–82 [CrossRef]
    [Google Scholar]
  38. Radestock U., Bredt W. 1977; Motility of Mycoplasma pneumoniae . J Bacteriol 129:1495–1501
    [Google Scholar]
  39. Razin S., Jacobs E. 1992; Mycoplasma adhesion. J Gen Microbiol 138:407–422 [CrossRef]
    [Google Scholar]
  40. Razin S., Yogev D., Naot Y. 1998; Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 62:1094–1156
    [Google Scholar]
  41. Regula J. T., Ueberle B., Boguth G., Herrmann R., Frank R, Görg A., Schnölzer M. 2000; Towards a proteome map of Mycoplasma pneumoniae . Electrophoresis 21:3765–3780 [CrossRef]
    [Google Scholar]
  42. Romero-Arroyo C. E., Jordan J., Peacock S. J., Willby M. J., Farmer M. A., Krause D. C. 1999; Mycoplasma pneumoniae protein P30 is required for cytadherence and associated with proper cell development. J Bacteriol 181:1079–1087
    [Google Scholar]
  43. Shevchenko A., Jensen O. N., Podtelejnikov A. V. 7 other authors 1996; Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci USA 93:14440–14445 [CrossRef]
    [Google Scholar]
  44. Simons K., Ikonen E. 1997; Functional rafts in cell membranes. Nature 387:569–572 [CrossRef]
    [Google Scholar]
  45. Sperker B., Hu P., Herrmann R. 1991; Identification of gene products of the P1 operon of Mycoplasma pneumoniae . Mol Microbiol 5:299–306 [CrossRef]
    [Google Scholar]
  46. Starger J. M., Goldman R. D. 1977; Isolation and preliminary characterization of 10-nm filaments from baby hamster kidney (BHK-21) cells. Proc Natl Acad Sci USA 74:2422–2426 [CrossRef]
    [Google Scholar]
  47. Steinert P. M., Zimmerman S. B., Starger J. M., Goldman R. D. 1978; Ten-nanometer filaments of hamster BHK-21 cells and epidermal keratin filaments have similar structures. Proc Natl Acad Sci USA 75:6098–6101 [CrossRef]
    [Google Scholar]
  48. Stevens M. K., Krause D. C. 1991; Localization of the Mycoplasma pneumoniae cytadherence-accessory proteins HMW1 and HMW4 in the cytoskeletonlike Triton shell. J Bacteriol 173:1041–1050
    [Google Scholar]
  49. Stevens M. K., Krause D. C. 1992; Mycoplasma pneumoniae cytadherence phase-variable protein HMW3 is a component of the attachment organelle. J Bacteriol 174:4265–4274
    [Google Scholar]
  50. Su C. J., Tryon V. V., Baseman J. B. 1987; Cloning and sequence analysis of cytadhesin P1 gene from Mycoplasma pneumoniae . Infect Immun 55:3023–3029
    [Google Scholar]
  51. Trachtenberg S. 1998; Mollicutes – wall-less bacteria with internal cytoskeletons. J Struct Biol 124:244–256 [CrossRef]
    [Google Scholar]
  52. Wasinger V. C., Cordwell S. J., Cerpa Poljak A. 7 other authors 1995; Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium . Electrophoresis 16:1090–1094 [CrossRef]
    [Google Scholar]
  53. Wasinger V. C., Pollack J. D., Humphery-Smith I. 2000; The proteome of Mycoplasma genitalium . Chaps-soluble component. Eur J Biochem 267:1571–1582 [CrossRef]
    [Google Scholar]
  54. Weisburg W. G., Tully J. G., Rose D. L. 9 other authors 1989; A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol 171:6455–6467
    [Google Scholar]
  55. Wilkins M. R., Sanchez J. C., Williams K. L., Hochstrasser D. F. 1996; Current challenges and future applications for protein maps and post-translational vector maps in proteome projects. Electrophoresis 17:830–838 [CrossRef]
    [Google Scholar]
  56. Wilson M. H., Collier A. M. 1976; Ultrastructural study of Mycoplasma pneumoniae in organ culture. J Bacteriol 125:332–339
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-4-1045
Loading
/content/journal/micro/10.1099/00221287-147-4-1045
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error