The electrophoretic softness of the surface of cells grown in a liquid medium and on a solid agar Free

Abstract

Many strains possess capsule or slime layers and consequently the staphylococcal cell surface should be regarded as a soft, polyelectrolyte layer allowing electrophoretic fluid flow through a layer of fixed charges. The presence of such a soft layer decreases the energy barrier due to electrostatic repulsion in the interaction of the organisms with negatively charged substrata [Morisaki, H., Nagai, S., Ohshima, H., Ikemoto, E. & Kogure, K. (1999), 145, 2797–2802] and hence plays an important role in their adhesion. In this paper, the authors compare the electrophoretic softness and amount of fixed charge in the outer cell surface layers of 20 strains, grown in a liquid medium or on a solid agar, as determined from the dependencies of their electrophoretic mobilities upon the ionic strength of a suspending fluid. Most of the staphylococcal cell surfaces were relatively soft, with a mean cell surface softness (1/λ) for strains grown in liquid medium of 17±06 nm (standard deviation over all 20 strains) which is soft by comparison with a completely bald, peptidoglycan-rich streptococcal cell surface (1/λ=07 nm). When the staphylococcal strains were grown on solid agar, the cell surface softness of 17 of the 20 strains increased, sometimes by a factor of two. On average for 20 strains, the cell surface softness increased significantly (<005, Student’s -test) to 28±18 nm. The amount of fixed charge in the outer cell surface layer was −28±9 mM for bacteria grown in liquid medium and −24±12 mM for bacteria grown on agar. A soft, highly negatively charged polyelectrolyte layer was inferred by microelectrophoresis for all the staphylococcal cell surfaces, regardless of whether staining had indicated the presence of a capsule or slime layer.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-3-757
2001-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/3/1470757a.html?itemId=/content/journal/micro/10.1099/00221287-147-3-757&mimeType=html&fmt=ahah

References

  1. Bos R., Busscher H. J, Van der Mei H. C. 1998; ‘‘Soft particle’’ analysis of the electrophoretic mobility of a fibrillated and non-fibrillated oral streptococcal strain: Streptococcus salivarius. Biophys Chem 74:251–255 [CrossRef]
    [Google Scholar]
  2. Bos R., Busscher H. J, Van der Mei H. C. 1999; Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods to study. FEMS Microbiol Rev 23:179–230
    [Google Scholar]
  3. Christensen G. D., Simpson W. A., Bisno A. L., Beachy E. H. 1982; Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 37:318–326
    [Google Scholar]
  4. Dankert J., Hogt A. H., Feijen J. 1986; Biomedical polymers: bacterial adhesion, colonization, and infection. Crit Rev Biocompat 2:219–301
    [Google Scholar]
  5. Hiemenz P. C. 1977; Electrophoresis and other electrokinetic phenomena. In Principles of Colloid and Surface Chemistry pp 452–487 Edited by Lagowski J. J. New York: Marcel Dekker;
    [Google Scholar]
  6. James A. M. 1979; Electrophoresis of particles in suspension. Surf Colloid Sci 11:121–185
    [Google Scholar]
  7. Jucker B. A., Harms H., Zehnder A. J. B. 1996; Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and Teflon. J Bacteriol 178:5472–5479
    [Google Scholar]
  8. Lyklema J. 1994; On the slip process in electrokinetics. Colloids Surf A: Physicochem Eng Aspects 92:41–49 [CrossRef]
    [Google Scholar]
  9. Kawahata S., Ohshima H., Muramatsu N., Kondo T. 1990; Charge distribution in the surface region of human erythrocytes from electrophoretic mobility data. J Colloid Interface Sci 138:182–186 [CrossRef]
    [Google Scholar]
  10. Matthews K. R., Oliver S. P., Guidney A. J. 1991; Encapsulation of coagulase-negative staphylococci of bovine origin. J Appl Bacteriol 71:38–45
    [Google Scholar]
  11. Morisaki H., Nagai S., Ohshima H., Ikemoto E., Kogure K. 1999; The effect of mobility and cell-surface polymers on bacterial attachment. Microbiology 145:2797–2802
    [Google Scholar]
  12. Morita K., Muramatsu N., Ohshima H., Kondo T. 1991; Electrophoretic behaviour of rat lymphocyte subpopulations. J Colloid Interface Sci 147:457–461 [CrossRef]
    [Google Scholar]
  13. Ohshima H. 1995; Electrophoretic mobility of soft particles. Colloids Surf A: Physicochem Eng Aspects 103:249–255 [CrossRef]
    [Google Scholar]
  14. Ohshima H., Kondo T. 1991; On the electrophoretic mobility of biological cells. Biophys Chem 39:191–198 [CrossRef]
    [Google Scholar]
  15. Poortinga A. T., Bos R., Busscher H. J. 2001; Electrostatic interactions in the adhesion of an ion-penetrable and ion-impenetrable bacterial strain to glass. Colloids Surf B: Biointerfaces 20:105–117 [CrossRef]
    [Google Scholar]
  16. Van der Mei H. C., Van de Belt-Gritter B. Reid G., Bialkowska-Hobrzanska H., Busscher H. J. 1997; Adhesion of coagulase-negative staphylococci grouped according to physico-chemical properties. Microbiology 143:3861–3870 [CrossRef]
    [Google Scholar]
  17. Van der Mei H. C. Busscher H. J., Bos R., De Vries J., Boonaert C. J. P., Dufrene Y. F. 2000; Direct probing by atomic force microscopy of the cell surface softness of a fibrillated and nonfibrillated oral streptococcal strain. Biophys J 78:2668–2674 [CrossRef]
    [Google Scholar]
  18. Van der Wal A., Minor M., Norde W., Zehnder A. J. B., Lyklema J. 1997; Electrokinetic potential of bacterial cells. Langmuir 13:165–171 [CrossRef]
    [Google Scholar]
  19. Van Pelt A. W. J., Weerkamp A. H., Uyen M. H. W. J. C., Busscher H. J., De Jong H. P., Arends J. 1985; Adhesion of Streptococcus sanguis to polymers with different surface free energies. Appl Environ Microbiol 49:1270–1275
    [Google Scholar]
  20. Weerkamp A. H., Handley P. S., Baars A., Slot J. W. 1986; Negative-staining and immunoelectron microscopy of adhesion-deficient mutants of Streptococcus salivarius reveal that the adhesive protein antigens are separate classes of cell surface fibrils. J Bacteriol 165:746–755
    [Google Scholar]
  21. Wit P. J., Noordmans J., Busscher H. J. 1997; Tracking of colloidal particles using microscopic image sequence analysis. Application to particulate microelectrophoresis and particle deposition. Colloids Surf A: Physicochem Eng Aspects 125:85–92 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-3-757
Loading
/content/journal/micro/10.1099/00221287-147-3-757
Loading

Data & Media loading...

Most cited Most Cited RSS feed