An inducible 1-butanol dehydrogenase, a quinohaemoprotein, is involved in the oxidation of butane by ‘Free

Abstract

Butane-grown ‘’ expressed two soluble alcohol dehydrogenases (ADHs), an NAD-dependent secondary ADH and an NAD-independent primary ADH. Two additional NAD-dependent secondary ADHs could be detected when cells were grown on 2-butanol and lactate. The inducible NAD-independent 1-butanol dehydrogenase (BDH) of butane-grown cells was primarily responsible for 1-butanol oxidation in the butane metabolism pathway. BDH was purified to near homogeneity and identified as a quinohaemoprotein, containing, per mol enzyme, 10 mol pyrroloquinoline quinone (PQQ) and 025 mol haem as prosthetic groups. BDH was synthesized as a monomer of approximately 66 kDa. It has a broad substrate range, including primary alcohols, secondary alcohols, aldehydes, C diols and aromatic alcohols. It exhibited the lowest (7±1 μM) and highest / (72×10 M s) value towards 1-butanol. BDH exhibited ferricyanide-dependent ADH activity. Calcium ions (up to 10 mM) increased BDH activity substantially. Two BDH internal amino acid sequences showed 73 and 62% identity and 83 and 66% similarity, respectively, when compared with an amino acid sequence of ethanol dehydrogenase from . The presence of the inducible BDH and secondary ADH may indicate that the terminal and subterminal oxidation pathways are involved in butane degradation of butane-grown ‘’.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-3-745
2001-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/3/1470745a.html?itemId=/content/journal/micro/10.1099/00221287-147-3-745&mimeType=html&fmt=ahah

References

  1. Arp D. J. 1999; Butane metabolism by butane-grown ‘ Pseudomonas butanovora ’. Microbiology 145:1173–1180 [CrossRef]
    [Google Scholar]
  2. Ashraf W., Murrell J. C. 1990; Purification and characterization of a NAD+-dependent secondary alcohol dehydrogenase from propane-grown Rhodococcus rhodochrous PNKb1. Arch Microbiol 153:163–168 [CrossRef]
    [Google Scholar]
  3. Ashraf W., Murrell J. C. 1992; Genetic, biochemical and immunological evidence for the involvement of two alcohol dehydrogenases in the metabolism of propane by Rhodococcus rhodochrous PNKb1. Arch Microbiol 157:488–492
    [Google Scholar]
  4. Ashraf W., Mihdhir A., Murrell J. C. 1994; Bacterial oxidation of propane. FEMS Microbiol Lett 122:1–6 [CrossRef]
    [Google Scholar]
  5. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1996 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  6. Beers P. J. 1988 The diversity of alcohol dehydrogenases in Pseudomonas butanovora and their role in alkane metabolism MSc thesis University of Warwick;
    [Google Scholar]
  7. Coleman J. P., Perry J. J. 1985; Purification and characterization of the secondary alcohol dehydrogenase from propane-utilizing Mycobacterium vaccae strain JOB5. J Gen Microbiol 131:2901–2907
    [Google Scholar]
  8. Delepelaire P., Chua N. 1979; Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of thylakoid membranes at 4 °C: characterization of two additional chlorophyll a -protein complexes. Proc Natl Acad Sci USA 76:111–115 [CrossRef]
    [Google Scholar]
  9. Dokter P., Frank J., Duine J. A. 1986; Purification and characterization of quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus L. M. D. 79.41. Biochem J 239:163–167
    [Google Scholar]
  10. Duetz W., Marques S., Ramos J. L, de Jong C., van Andel J. G. 1994; Inducibility of the TOL catabolic pathway in Pseudomonas putida (pWWO) growing on succinate in continuous culture: evidence for catabolic repression control. J Bacteriol 176:2354–2361
    [Google Scholar]
  11. Duine J. A., Frank J., Jongejan J. A. 1983; Detection and determination of pyrroloquinoline quinone, the coenzyme of quinoproteins. Anal Biochem 133:239–243 [CrossRef]
    [Google Scholar]
  12. Geerlof A., Jongejan J. A., Duine J. A, van Tol J. B. A. 1994; Enantioselective conversions of the racemic C3-alcohol synthons, glycidol and solketal, by quinohaemoprotein alcohol dehydrogenases and bacteria containing such enzymes. Biosci Biotechnol Biochem 58:1038–1046
    [Google Scholar]
  13. Goodwin P., Anthony C. 1998; The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microb Physiol 40:1–80
    [Google Scholar]
  14. Groen B. W., Frank J., Duine J. A. 1984; Quinoprotein alcohol dehydrogenase from ethanol-grown Pseudomonas aeruginosa. Biochem J 223:921–924
    [Google Scholar]
  15. Groen B. W., Van Kleef M. A. G., Duine J. A. 1986; Quinohaemoprotein alcohol dehydrogenase apoenzyme from Pseudomonas testosteroni . Biochem J 234:611–615
    [Google Scholar]
  16. Hamamura N., Page C., Long T., Semprini L., Arp D. J. 1997; Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora , and Mycobacterium vaccae JOB5 and methane-grown Methylosinus trichosporium OB3b. Appl Environ Microbiol 63:3607–3613
    [Google Scholar]
  17. Hamamura N., Storfa R. T., Semprini L., Arp D. J. 1999; Diversity in butane monooxygenases among butane-grown bacteria. Appl Environ Microbiol 65:4586–4593
    [Google Scholar]
  18. Hisada R., Yagi T. 1977; 1-Methoxy-5-methylphenazinium methyl sulfate. A photochemically stable electron mediator between NADH and various electron acceptors. J Biochem 82:1469–1473
    [Google Scholar]
  19. Hopper D. J., Rogozinski J., Toczko M. 1991; Lupanine hydroxylase, a quinocytochrome c from an alkaloid-degrading Pseudomonas sp. Biochem J 279:105–109
    [Google Scholar]
  20. Hou C. T., Patel R., Laskin A. I., Barnabe N., Barist I. 1983; Production of methyl ketones from secondary alcohols by cell suspensions of C2 to C4 n -alkane-grown bacteria. Appl Environ Microbiol 46:178–184
    [Google Scholar]
  21. de Jong G. A. H. Geerlof A., Stoorvogel J., Jongejan J. A., De Vries S., Duine J. A. 1995; Quinohaemoprotein ethanol dehydrogenase from Comamonas testosteroni : purification, characterization and reconstitution of the apoenzyme with pyrroloquinoline quinone analogues. Eur J Biochem 230:899–905 [CrossRef]
    [Google Scholar]
  22. Krieger C. J., Beller H. R., Reinhard M., Spormann A. M. 1999; Initial reactions in anaerobic oxidation of m -xylene by the denitrifying bacterium Azoarcus sp. strain T. J Bacteriol 181:6403–6410
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  24. Lange L. G., Vallee B. L. 1976; Double-ternary complex affinity chromatography: preparation of alcohol dehydrogenases. Biochemistry 15:4681–4686 [CrossRef]
    [Google Scholar]
  25. Matsushita K., Toyama H., Adashi O. 1994; Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36:247–301
    [Google Scholar]
  26. Nakamura S., Arimura K., Ogawa K., Yagi T. 1982; Use of 1-methoxy-5 methylphenazinium methyl sulfate (1-methoxyPMS) in the assay of some enzymes of diagnostic importance. Clin Chim Acta 101:321–326
    [Google Scholar]
  27. Paul K. G., Theorell H., Akeson A. 1953; The molar light absorption of pyridine ferroprotoporphyrin (pyridine haemochromogen. Acta Chem Scand 7:1284–1287 [CrossRef]
    [Google Scholar]
  28. Perry J. J. 1980; Propane utilization by microorganisms. Adv Appl Microbiol 26:89–115
    [Google Scholar]
  29. Philipp B., Schink B. 1998; Evidence of two oxidative reaction steps initiating anaerobic degradation of resorcinol (1,3-dihydroxybenzene) by the denitrifying bacterium Azoarcus anaerobinus . J Bacteriol 180:3644–3649
    [Google Scholar]
  30. Phillips W. E., Perry J. J. 1974; Metabolism of n -butane and 2-butanone by Mycobacterium vaccae . J Bacteriol 120:987–989
    [Google Scholar]
  31. Reinhold-Hurek B., Hurek T., Gillis M., Hoste B., Vancanneyt M., Kersters K., De Ley J. 1993; Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of Kallar grass ( Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens and Azoarcus communis sp. nov. Int J Syst Bacteriol 43:574–584 [CrossRef]
    [Google Scholar]
  32. Smith P. K., Krohn R. I., Hermanson G. T. 7 other authors 1986; Measurement of protein using bicinchonic acid. Anal Biochem 150:76–85
    [Google Scholar]
  33. Stephens G. M., Dalton H. 1986; The role of the terminal and subterminal oxidation pathways in propane metabolism by bacteria. J Gen Microbiol 132:2453–2462
    [Google Scholar]
  34. Stoorvogel J., Kraayveld D. E., Vansluis C. A., Jongejan J. A., Duine J. A, de Vries S. 1996; Characterization of gene encoding quinohaemoprotein ethanol dehydrogenase of Comamonas testosteroni . Eur J Biochem 235:690–698 [CrossRef]
    [Google Scholar]
  35. Takahashi J. 1980; Production of intracellular and extracellular protein from n -butane by Pseudomonas butanovora sp. nov. Adv Appl Microbiol 26:117–127
    [Google Scholar]
  36. Takahashi J., Ichikawa Y., Sagae H., Komura I., Kanou H., Yamada K. 1980; Isolation and identification of n -butane-assimilating bacterium. Agric Biol Chem 44:1835–1840 [CrossRef]
    [Google Scholar]
  37. Thomas P. E., Ryan D., Levin W. 1976; An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem 75:169–176
    [Google Scholar]
  38. Toyama H., Fujii A., Matsushita K., Shinagawa E., Ameyama M., Adachi O. 1995; Three distinct quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols. J Bacteriol 177:2442–2450
    [Google Scholar]
  39. Van Der Linden A. C., Huybregtse R. 1969; Occurence of inducible and NAD(P)-independent primary alcohol dehydrogenase in an alkane-oxidizing Pseudomonas . Antonie Leewenhoek 35:344–360 [CrossRef]
    [Google Scholar]
  40. Van Ginkel C. G., Welten H. G. J., Hartmans S., De Bont J. A. M. 1987; Metabolism of trans -2-butene and butane in Nocardia TB1. J Gen Microbiol 133:1713–1720
    [Google Scholar]
  41. Van Noorden C. J. F., Kooij A., Vogels I. M. C., Frederiks W. M. 1985; On the nature of the ‘nothing dehydrogenase’ reaction. Histochem J 17:1111–1118 [CrossRef]
    [Google Scholar]
  42. Vestal J. R., Perry J. J. 1969; Divergent metabolic pathways for propane and propionate utilization by a soil isolate. J Bacteriol 99:216–221
    [Google Scholar]
  43. Wiegant W. W., de Bont J. A. M. 1980; A new route for ethylene glycol metabolism in Mycobacterium E44. J Gen Microbiol 120:325–331
    [Google Scholar]
  44. Woods N. R., Murrell J. C. 1989; The metabolism of propane in Rhodococcus rhodochrous PNKb1. J Gen Microbiol 135:2335–2344
    [Google Scholar]
  45. Yamanaka K., Tsuyuki Y. 1983; A new dye-linked alcohol dehydrogenase (vanillyl alcohol dehydrogenase) from Rhodopseudomonas acidophila M402: purification, identification of reaction product and substrate specificity. Agric Biol Chem 47:2173–2183 [CrossRef]
    [Google Scholar]
  46. Yuste L., Canosa I., Fernando R. 1998; Carbon-source-dependent expression of the PalkB promoter from the Pseudomonas oleovorans alkane degradation pathway. J Bacteriol 180:5218–5226
    [Google Scholar]
  47. Zarnt G., Schrader T., Andreesen J. R. 1997; Degradation of tetrahydrofurfuryl alcohol by Ralstonia eutropha is initiated by an inducible pyrroloquinoline quinone-dependent alcohol dehydrogenase. Appl Environ Microbiol 63:4891–4898
    [Google Scholar]
  48. Zheng Y., Bruice T. 1997; Conformation of coenzyme pyrroloquinoline quinone and role of Ca2+ in the catalytic mechanism of quinoprotein methanol dehydrogenase. Proc Natl Acad Sci USA 94:11881–11886 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-3-745
Loading
/content/journal/micro/10.1099/00221287-147-3-745
Loading

Data & Media loading...

Most cited Most Cited RSS feed