1887

Abstract

Butane-grown ‘’ expressed two soluble alcohol dehydrogenases (ADHs), an NAD-dependent secondary ADH and an NAD-independent primary ADH. Two additional NAD-dependent secondary ADHs could be detected when cells were grown on 2-butanol and lactate. The inducible NAD-independent 1-butanol dehydrogenase (BDH) of butane-grown cells was primarily responsible for 1-butanol oxidation in the butane metabolism pathway. BDH was purified to near homogeneity and identified as a quinohaemoprotein, containing, per mol enzyme, 10 mol pyrroloquinoline quinone (PQQ) and 025 mol haem as prosthetic groups. BDH was synthesized as a monomer of approximately 66 kDa. It has a broad substrate range, including primary alcohols, secondary alcohols, aldehydes, C diols and aromatic alcohols. It exhibited the lowest (7±1 μM) and highest / (72×10 M s) value towards 1-butanol. BDH exhibited ferricyanide-dependent ADH activity. Calcium ions (up to 10 mM) increased BDH activity substantially. Two BDH internal amino acid sequences showed 73 and 62% identity and 83 and 66% similarity, respectively, when compared with an amino acid sequence of ethanol dehydrogenase from . The presence of the inducible BDH and secondary ADH may indicate that the terminal and subterminal oxidation pathways are involved in butane degradation of butane-grown ‘’.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-3-745
2001-03-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/3/1470745a.html?itemId=/content/journal/micro/10.1099/00221287-147-3-745&mimeType=html&fmt=ahah

References

  1. Arp, D. J. ( 1999; ). Butane metabolism by butane-grown ‘Pseudomonas butanovoraMicrobiology 145, 1173-1180.[CrossRef]
    [Google Scholar]
  2. Ashraf, W. & Murrell, J. C. ( 1990; ). Purification and characterization of a NAD+-dependent secondary alcohol dehydrogenase from propane-grown Rhodococcus rhodochrous PNKb1. Arch Microbiol 153, 163-168.[CrossRef]
    [Google Scholar]
  3. Ashraf, W. & Murrell, J. C. ( 1992; ). Genetic, biochemical and immunological evidence for the involvement of two alcohol dehydrogenases in the metabolism of propane by Rhodococcus rhodochrous PNKb1. Arch Microbiol 157, 488-492.
    [Google Scholar]
  4. Ashraf, W., Mihdhir, A. & Murrell, J. C. ( 1994; ). Bacterial oxidation of propane. FEMS Microbiol Lett 122, 1-6.[CrossRef]
    [Google Scholar]
  5. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (1996). Current Protocols in Molecular Biology. New York: Wiley.
  6. Beers, P. J. (1988). The diversity of alcohol dehydrogenases in Pseudomonas butanovora and their role in alkane metabolism. MSc thesis, University of Warwick.
  7. Coleman, J. P. & Perry, J. J. ( 1985; ). Purification and characterization of the secondary alcohol dehydrogenase from propane-utilizing Mycobacterium vaccae strain JOB5. J Gen Microbiol 131, 2901-2907.
    [Google Scholar]
  8. Delepelaire, P. & Chua, N. ( 1979; ). Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of thylakoid membranes at 4 °C: characterization of two additional chlorophyll a-protein complexes. Proc Natl Acad Sci USA 76, 111-115.[CrossRef]
    [Google Scholar]
  9. Dokter, P., Frank, J. & Duine, J. A. ( 1986; ). Purification and characterization of quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus L. M. D. 79.41. Biochem J 239, 163-167.
    [Google Scholar]
  10. Duetz, W., Marques, S., de Jong, C., Ramos, J. L. & van Andel, J. G. ( 1994; ). Inducibility of the TOL catabolic pathway in Pseudomonas putida (pWWO) growing on succinate in continuous culture: evidence for catabolic repression control. J Bacteriol 176, 2354-2361.
    [Google Scholar]
  11. Duine, J. A., Frank, J. & Jongejan, J. A. ( 1983; ). Detection and determination of pyrroloquinoline quinone, the coenzyme of quinoproteins. Anal Biochem 133, 239-243.[CrossRef]
    [Google Scholar]
  12. Geerlof, A., van Tol, J. B. A., Jongejan, J. A. & Duine, J. A. ( 1994; ). Enantioselective conversions of the racemic C3-alcohol synthons, glycidol and solketal, by quinohaemoprotein alcohol dehydrogenases and bacteria containing such enzymes. Biosci Biotechnol Biochem 58, 1038-1046.
    [Google Scholar]
  13. Goodwin, P. & Anthony, C. ( 1998; ). The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microb Physiol 40, 1-80.
    [Google Scholar]
  14. Groen, B. W., Frank, J. & Duine, J. A. ( 1984; ). Quinoprotein alcohol dehydrogenase from ethanol-grown Pseudomonas aeruginosa. Biochem J 223, 921-924.
    [Google Scholar]
  15. Groen, B. W., Van Kleef, M. A. G. & Duine, J. A. ( 1986; ). Quinohaemoprotein alcohol dehydrogenase apoenzyme from Pseudomonas testosteroni. Biochem J 234, 611-615.
    [Google Scholar]
  16. Hamamura, N., Page, C., Long, T., Semprini, L. & Arp, D. J. ( 1997; ). Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, and Mycobacterium vaccae JOB5 and methane-grown Methylosinus trichosporium OB3b. Appl Environ Microbiol 63, 3607-3613.
    [Google Scholar]
  17. Hamamura, N., Storfa, R. T., Semprini, L. & Arp, D. J. ( 1999; ). Diversity in butane monooxygenases among butane-grown bacteria. Appl Environ Microbiol 65, 4586-4593.
    [Google Scholar]
  18. Hisada, R. & Yagi, T. ( 1977; ). 1-Methoxy-5-methylphenazinium methyl sulfate. A photochemically stable electron mediator between NADH and various electron acceptors. J Biochem 82, 1469-1473.
    [Google Scholar]
  19. Hopper, D. J., Rogozinski, J. & Toczko, M. ( 1991; ). Lupanine hydroxylase, a quinocytochrome c from an alkaloid-degrading Pseudomonas sp. Biochem J 279, 105-109.
    [Google Scholar]
  20. Hou, C. T., Patel, R., Laskin, A. I., Barnabe, N. & Barist, I. ( 1983; ). Production of methyl ketones from secondary alcohols by cell suspensions of C2 to C4 n-alkane-grown bacteria. Appl Environ Microbiol 46, 178-184.
    [Google Scholar]
  21. de Jong, G. A. H., Geerlof, A., Stoorvogel, J., Jongejan, J. A., De Vries, S. & Duine, J. A. ( 1995; ). Quinohaemoprotein ethanol dehydrogenase from Comamonas testosteroni: purification, characterization and reconstitution of the apoenzyme with pyrroloquinoline quinone analogues. Eur J Biochem 230, 899-905.[CrossRef]
    [Google Scholar]
  22. Krieger, C. J., Beller, H. R., Reinhard, M. & Spormann, A. M. ( 1999; ). Initial reactions in anaerobic oxidation of m-xylene by the denitrifying bacterium Azoarcus sp. strain T. J Bacteriol 181, 6403-6410.
    [Google Scholar]
  23. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.[CrossRef]
    [Google Scholar]
  24. Lange, L. G. & Vallee, B. L. ( 1976; ). Double-ternary complex affinity chromatography: preparation of alcohol dehydrogenases. Biochemistry 15, 4681-4686.[CrossRef]
    [Google Scholar]
  25. Matsushita, K., Toyama, H. & Adashi, O. ( 1994; ). Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36, 247-301.
    [Google Scholar]
  26. Nakamura, S., Arimura, K., Ogawa, K. & Yagi, T. ( 1982; ). Use of 1-methoxy-5 methylphenazinium methyl sulfate (1-methoxyPMS) in the assay of some enzymes of diagnostic importance. Clin Chim Acta 101, 321-326.
    [Google Scholar]
  27. Paul, K. G., Theorell, H. & Akeson, A. ( 1953; ). The molar light absorption of pyridine ferroprotoporphyrin (pyridine haemochromogen). Acta Chem Scand 7, 1284-1287.[CrossRef]
    [Google Scholar]
  28. Perry, J. J. ( 1980; ). Propane utilization by microorganisms. Adv Appl Microbiol 26, 89-115.
    [Google Scholar]
  29. Philipp, B. & Schink, B. ( 1998; ). Evidence of two oxidative reaction steps initiating anaerobic degradation of resorcinol (1,3-dihydroxybenzene) by the denitrifying bacterium Azoarcus anaerobinus. J Bacteriol 180, 3644-3649.
    [Google Scholar]
  30. Phillips, W. E. & Perry, J. J. ( 1974; ). Metabolism of n-butane and 2-butanone by Mycobacterium vaccae. J Bacteriol 120, 987-989.
    [Google Scholar]
  31. Reinhold-Hurek, B., Hurek, T., Gillis, M., Hoste, B., Vancanneyt, M., Kersters, K. & De Ley, J. ( 1993; ). Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens and Azoarcus communis sp. nov. Int J Syst Bacteriol 43, 574-584.[CrossRef]
    [Google Scholar]
  32. Smith, P. K., Krohn, R. I., Hermanson, G. T. & 7 other authors ( 1986; ). Measurement of protein using bicinchonic acid. Anal Biochem 150, 76–85.
    [Google Scholar]
  33. Stephens, G. M. & Dalton, H. ( 1986; ). The role of the terminal and subterminal oxidation pathways in propane metabolism by bacteria. J Gen Microbiol 132, 2453-2462.
    [Google Scholar]
  34. Stoorvogel, J., Kraayveld, D. E., Vansluis, C. A., Jongejan, J. A., de Vries, S. & Duine, J. A. ( 1996; ). Characterization of gene encoding quinohaemoprotein ethanol dehydrogenase of Comamonas testosteroni. Eur J Biochem 235, 690-698.[CrossRef]
    [Google Scholar]
  35. Takahashi, J. ( 1980; ). Production of intracellular and extracellular protein from n-butane by Pseudomonas butanovora sp. nov. Adv Appl Microbiol 26, 117-127.
    [Google Scholar]
  36. Takahashi, J., Ichikawa, Y., Sagae, H., Komura, I., Kanou, H. & Yamada, K. ( 1980; ). Isolation and identification of n-butane-assimilating bacterium. Agric Biol Chem 44, 1835-1840.[CrossRef]
    [Google Scholar]
  37. Thomas, P. E., Ryan, D. & Levin, W. ( 1976; ). An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem 75, 169-176.
    [Google Scholar]
  38. Toyama, H., Fujii, A., Matsushita, K., Shinagawa, E., Ameyama, M. & Adachi, O. ( 1995; ). Three distinct quinoprotein alcohol dehydrogenases are expressed when Pseudomonas putida is grown on different alcohols. J Bacteriol 177, 2442-2450.
    [Google Scholar]
  39. Van Der Linden, A. C. & Huybregtse, R. ( 1969; ). Occurence of inducible and NAD(P)-independent primary alcohol dehydrogenase in an alkane-oxidizing Pseudomonas. Antonie Leewenhoek 35, 344-360.[CrossRef]
    [Google Scholar]
  40. Van Ginkel, C. G., Welten, H. G. J., Hartmans, S. & De Bont, J. A. M. ( 1987; ). Metabolism of trans-2-butene and butane in Nocardia TB1. J Gen Microbiol 133, 1713-1720.
    [Google Scholar]
  41. Van Noorden, C. J. F., Kooij, A., Vogels, I. M. C. & Frederiks, W. M. ( 1985; ). On the nature of the ‘nothing dehydrogenase’ reaction. Histochem J 17, 1111-1118.[CrossRef]
    [Google Scholar]
  42. Vestal, J. R. & Perry, J. J. ( 1969; ). Divergent metabolic pathways for propane and propionate utilization by a soil isolate. J Bacteriol 99, 216-221.
    [Google Scholar]
  43. Wiegant, W. W. & de Bont, J. A. M. ( 1980; ). A new route for ethylene glycol metabolism in Mycobacterium E44. J Gen Microbiol 120, 325-331.
    [Google Scholar]
  44. Woods, N. R. & Murrell, J. C. ( 1989; ). The metabolism of propane in Rhodococcus rhodochrous PNKb1. J Gen Microbiol 135, 2335-2344.
    [Google Scholar]
  45. Yamanaka, K. & Tsuyuki, Y. ( 1983; ). A new dye-linked alcohol dehydrogenase (vanillyl alcohol dehydrogenase) from Rhodopseudomonas acidophila M402: purification, identification of reaction product and substrate specificity. Agric Biol Chem 47, 2173-2183.[CrossRef]
    [Google Scholar]
  46. Yuste, L., Canosa, I. & Fernando, R. ( 1998; ). Carbon-source-dependent expression of the PalkB promoter from the Pseudomonas oleovorans alkane degradation pathway. J Bacteriol 180, 5218-5226.
    [Google Scholar]
  47. Zarnt, G., Schrader, T. & Andreesen, J. R. ( 1997; ). Degradation of tetrahydrofurfuryl alcohol by Ralstonia eutropha is initiated by an inducible pyrroloquinoline quinone-dependent alcohol dehydrogenase. Appl Environ Microbiol 63, 4891-4898.
    [Google Scholar]
  48. Zheng, Y. & Bruice, T. ( 1997; ). Conformation of coenzyme pyrroloquinoline quinone and role of Ca2+ in the catalytic mechanism of quinoprotein methanol dehydrogenase. Proc Natl Acad Sci USA 94, 11881-11886.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-3-745
Loading
/content/journal/micro/10.1099/00221287-147-3-745
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error