1887

Abstract

When grown in the presence of sunflower cell walls, , an ubiquitous necrotrophic fungus, secretes several acid proteases including a non-aspartyl protease. The gene , encoding an acid protease, has been cloned and sequenced. The intronless ORF encodes a preproprotein of 252 aa and a mature protein of 200 residues. expression of is subject to several transcriptional regulatory mechanisms. Expression induced by plant cell-wall proteins is controlled by both carbon and nitrogen catabolite repression. Glucose on its own represses expression while ammonium repression requires the simultaneous presence of a carbon source. Ambient pH higher than pH 5 overrides induction resulting in full repression of . These transcriptional regulatory mechanisms and the presence of several motifs in the promoter of that may encode binding sites for the regulators CREA, AREA and PacC suggest the involvement of these regulators in the control of expression is expressed during sunflower cotyledon infection. Expression is low at the beginning of infection but increases suddenly at the stage of necrosis spreading. Comparison of and expression suggests that glucose and nitrogen starvation together with acidification can be considered as key factors controlling gene expression during pathogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-3-717
2001-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/3/1470717a.html?itemId=/content/journal/micro/10.1099/00221287-147-3-717&mimeType=html&fmt=ahah

References

  1. Alghisi P., Favaron F. 1995; Pectin-degrading enzymes and plant-parasite interactions. Eur J Plant Pathol 101:365–375 [CrossRef]
    [Google Scholar]
  2. Annis S. L., Goodwin P. H. 1997; Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. Eur J Plant Pathol 103:1–14 [CrossRef]
    [Google Scholar]
  3. Arst H. NJr, Bailey C. R. 1977; The regulation of carbon metabolism. In Genetics and Physiology of Aspergillus pp 131–145 Edited by Smith J. E., Pateman J. A. London: Academic Press;
    [Google Scholar]
  4. Ball A. M., Ashby A. M., Daniels M. J., Ingram D. S., Johnstone K. 1991; Evidence for the requirement of extracellular protease in the pathogenic interaction of Pyrenopeziza brassicae with oilseed rape. Physiol Mol Plant Pathol 38:147–161 [CrossRef]
    [Google Scholar]
  5. Bidochka M. J., Burke S., Ng L. 1999a; Extracellular hydrolytic enzymes in the fungal genus Verticillium : adaptations for pathogenesis. Can J Microbiol 45:856–864 [CrossRef]
    [Google Scholar]
  6. Bidochka M. J., St Leger R. J., Stuart A., Gowanlock K. 1999b; Nuclear rDNA phylogeny in the fungal genus Verticillium and its relationship to insect and plant virulence, extracellular proteases and carbohydrases. Microbiology 145:955–963 [CrossRef]
    [Google Scholar]
  7. Bradford M. M. 1976; A rapid and a sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–264 [CrossRef]
    [Google Scholar]
  8. Brownlee A. G. 1988; A rapid DNA isolation procedure applicable to many refractory filamentous fungi. Fungal Genet Newsl 35:8–9
    [Google Scholar]
  9. Caddick M., Brownlee A., Arst H. 1986; Regulation of gene expression by pH of the growth medium in Aspergillus nidulans . Mol Gen Genet 203:346–353 [CrossRef]
    [Google Scholar]
  10. Carpita N. C., Gibeaut D. M. 1993; Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30 [CrossRef]
    [Google Scholar]
  11. Chen Z. B., Lax A., Cleverland T., Russin J. 1999; Inhibition of plant pathogenic fungi by a corn trypsin inhibitor overexpressed in Escherichia coli.. Appl Environ Microbiol 65:1320–1324
    [Google Scholar]
  12. Coleman M., Henricot B., Arnau J., Oliver R. P. 1997; Starvation-induced genes of the tomato pathogen Cladosporium fulvum are also induced during growth in planta . Mol Plant–Microbe Interact 10:1106–1109 [CrossRef]
    [Google Scholar]
  13. Cubero B., Gomez D., Scazzochio C. 2000; Metabolite repression and inducer exclusion in the proline utilization gene cluster of Aspergillus nidulans. J Bacteriol 182:233–235 [CrossRef]
    [Google Scholar]
  14. De Bernardis F., Mühlschlegel F. A., Cassone A., Fonzi W. A. 1998; The pH of the host niche controls gene expression in and virulence of Candida albicans . Infect Immun 66:3317–3325
    [Google Scholar]
  15. Fraissinet-Tachet L., Reymond-Cotton P., Fevre M. 1995; Characterization of a multigene family encoding an endopolygalacturonase in Sclerotinia sclerotiorum . Curr Genet 29:96–99 [CrossRef]
    [Google Scholar]
  16. Fu Y. H., Marzluf G. A. 1990; nit-2 , the major positive acting nitrogen regulatory gene of Neurospora crassa , encodes a sequence specific DNA-binding protein. Proc Natl Acad Sci USA 87:5331–5335 [CrossRef]
    [Google Scholar]
  17. Gente S., Durand-Poussereau N., Fevre M. 1997; Controls of the expression of aspA , the aspartyl protease gene of Penicillium roqueforti . Mol Gen Genet 256:557–565 [CrossRef]
    [Google Scholar]
  18. Gonzalez R., Gavrias V., Gomez D., Scazzocchio C., Cubero B. 1997; The integration of nitrogen and carbon catabolite repression in Aspergillus nidulans requires the GATA factor AreA and an additional positive-acting element, ADA. EMBO J 16:2937–2944 [CrossRef]
    [Google Scholar]
  19. Griffen A. M., Wiebe M. G., Robson G. D., Trinci A. P. J. 1997; Extracellular proteases produced by the Quorn myco-protein fungus Fusarium graminearum in batch and chemostat culture. Microbiology 143:3007–3013 [CrossRef]
    [Google Scholar]
  20. Hensel M., Tang C. M., Holden D. W, Arst H. N. Jr 1995; Regulation of fungal extracellular proteases and their role in mammalian pathogenesis. Can J Bot 73:S1065–S1070 [CrossRef]
    [Google Scholar]
  21. Iio K., Yamasaki M. 1976; Specificity of acid protease A from Aspergillus niger var. macrosporus towards B-chain of performic acid oxidized bovine insulin. Biochim Biophys Acta 429:912–924 [CrossRef]
    [Google Scholar]
  22. Inoue H., Kimura T., Makabe O., Takahashi K. 1991; The gene and deduced protein sequences of the zymogen of Aspergillus niger acid protease A. J Biol Chem 226:19484–19489
    [Google Scholar]
  23. Jara P., Gilbert S., Delmas P., Guillemot J. C., Jaghad M., Ferrara P., Loison G. 1996; Cloning and characterization of the eapB and eapC genes of Cryphonectria parasitica encoding two new acid proteinases, and disruption of eapC . Mol Gen Genet 250:97–105
    [Google Scholar]
  24. Jarai P., Buxton F. 1994; Nitrogen, carbon and pH regulation of extracellular acidic proteases of Aspergillus niger. Curr Genet 26:238–244 [CrossRef]
    [Google Scholar]
  25. Kulmburg P., Mathieu M., Dowzer C., Kelly J., Felenbok B. 1993; Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans . Mol Microbiol 7:847–857 [CrossRef]
    [Google Scholar]
  26. Magro P., Marciano P., Di Lenna P. 1984; Oxalic acid production and its role in pathogenesis of Sclerotinia sclerotiorum . FEMS Microbiol Lett 24:9–12 [CrossRef]
    [Google Scholar]
  27. Maı̈ta T., Nagata S., Matsuda G., Maruta S., Oda K., Murado S., Tsuru D. 1984; Complete amino acid sequence of Scytalidium lignicolum acid protease B. J Biochem 95:465–475
    [Google Scholar]
  28. Martel M., Letoublon R., Fevre M. 1996; Purification of endopolygalacturonase from Sclerotinia sclerotiorum : multiplicity of the complex enzyme system. Curr Genet 33:243–248
    [Google Scholar]
  29. Marzluf G. A. 1997; Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61:17–32
    [Google Scholar]
  30. Movahedi S., Heale J. B. 1990; The roles of aspartic protease and endo-pectin lyase enzymes in the primary stages of infection and pathogenesis of various host tissues by different isolates of Botrytis cinerea Pers. ex Pers. Physiol Mol Plant Pathol 36:303–324 [CrossRef]
    [Google Scholar]
  31. Murphy J. M., Walton J. D. 1996; Three extracellular proteases from Cochliobolus carbonum : cloning and targeted disruption of ALP1. Mol Plant–Microbe Interact 9:290–297 [CrossRef]
    [Google Scholar]
  32. Oda N., Gotoh Y., Oyama H., Murao S., Oda K., Tsuru D. 1998; Nucleotide sequence of the gene encoding the precursor protein of pepstatin insensitive acid protease B, scytalidopepsin B, from Scytalidium lignicolum . Biosci Biotechnol Biochem 62:1637–1639 [CrossRef]
    [Google Scholar]
  33. Oliver R., Osbourn A. 1995; Molecular dissection of fungal phytopathogenicity. Microbiology 141:1–9 [CrossRef]
    [Google Scholar]
  34. Pernas M., Lopez-Solanilla E., Sanchez-Monge R., Salcedo G., Rodriguez-Palenzuela P. 1999; Antifungal activity of a plant cystatin. Mol Plant–Microbe Interact 12:624–627 [CrossRef]
    [Google Scholar]
  35. Rauscher M., Mendgen K., Deising H. 1995; Extracellular proteases of the rust fungus Uromyces viciae-fabae . Exp Mycol 19:26–34 [CrossRef]
    [Google Scholar]
  36. Riou C. 1991 Production et sécretion du système hydrolytique de Sclerotinia sclerotiorum: analyses biochimiques et génétiques PhD thesis Université Lyon1;
    [Google Scholar]
  37. Riou C., Freyssinet G., Fevre M. 1991; Production of cell wall degrading enzymes by the phytopathogenic fungus Sclerotinia sclerotiorum . Appl Environ Microbiol 57:1478–1484
    [Google Scholar]
  38. Ryan C. A. 1990; Protease inhibitors in plants: genes for improving defences against insects and pathogens. Annu Rev Phytopathol 28:425–429 [CrossRef]
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor; New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. St Leger R. J., Joshi L., Roberts D. W. 1997; Adaptation of proteases and carbohydrases of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology 143:1983–1992 [CrossRef]
    [Google Scholar]
  41. Takahashi K., Inoue H., Kohama T. 8 other authors 1991; The primary structure of Aspergillus niger acid protease A. J Biol Chem 226:19480–19483
    [Google Scholar]
  42. Talbot N. J., McCafferty H. R., Ma M., Moore K., Hamer J. E. 1997; Nitrogen starvation of the rice blast fungus Magnaporthe grisea may act as an environmental cue for disease symptom expression. Physiol Mol Plant Pathol 50:179–195 [CrossRef]
    [Google Scholar]
  43. Tilburn J., Sarkar S., Widdick D. A., Espeso E. A., Orejas M., Mungroo J., Penalva M. A., Arst H. N. Jr 1995; The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid and alkaline expressed genes by ambient pH. EMBO J 14:779–790
    [Google Scholar]
  44. Vautard-Mey G., Cotton-Reymond P., Fevre M. 1999; Expression and compartmentation of the glucose repressor CRE1 from the phytopathogenic fungus Sclerotinia sclerotiorum . Eur J Biochem 226:252–259
    [Google Scholar]
  45. Walton J. D. 1994; Deconstructing the cell wall. Plant Physiol 104:1113–1118
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-3-717
Loading
/content/journal/micro/10.1099/00221287-147-3-717
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error